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Some statements eguivalent to the

quasi-Riemann hypothesis.

As usual in Number Theory, let 8 be a complex variable,
G = Reg, © = Ims. Let [ be Riemann's zeta function, and, fox

1>dg 2%, let RH(0p) be the statement
t{s) # 0 for o > dg.

We refer to this statement as the 'quasi-Riemann hypothesis'. With our

notation, RH(%) will then signify the Riemann hypothesis proper.

In this and later sections we have occasion to use the following
result for expressing a Dirichlet series as an integral. The pxcof of
this result is a simple application of a well-known technique but is

included here for the sake of completeness.

Proposition 1.

Let g : N > & satisfy

Ay = J a(@) = o)
ngw

as &£ <+ o, Then for o > A ,
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and the function defined by the integral is analytic foxr ¢~ A

FPor real K let

s @ = ] A, M@ = ] u(myn”
nse nse

ho@ = 5 oamaSt, g @ = I owent
nEx nsxe

i@ = [ ko, G@ = Log.m
nLk

nsx

A is Liouville's function, and u is the mdcius function.

K = ~1 or K > -Oy. Then the following statements are
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(i) Ri (0g) ,
(i1) ¥ e>0, S @ =0a"0"") as z e,
(iii) VY &> o0, HK+1(m) - 0(x00+1+x+8) as @ > o,
(iv) V oe>o0, M (x) = 0@ ) a5 2 o,

(v) Ve>o0, G @ = 0@COTIHTEYy o 2 5 .
Proof:

We show that {i) < (ii) => (iii) => (i}. The proof that

(1) = (iv) = {(v) = (i) is similar.

To show that {i) => (ii) suppose that RiI(gp) is true and

The method in Titchmarch [1], pages

tonsider first the case k = -1.

)82-283, can be modified to argue that £(8) = O(t"),

= 0(t%) as %+, for every o > 0y, and every € > 0. Now let

f(s) = C(ES)/C (3) .

for every ¢ > gg and any € > 0, f(s) O(tg) as t -+ », and
0

chmarch [1], page 6,

for ¢ > 1. .
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- i clear that f(1) = 0. Using a procedure similar to that in

5 @ = ) A (n)
- nsmn
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og-l+8-LT gg-L+8+LT 2447 &
. + + fwsl)= dw +
2T Jo-gp 0g-1+6-2T  Jog=1+6+iT
2
X
+ O(TFﬂ r

gg-1+8

= o Tt 22y 4 07 & )

as x + ®, provided € > 0, and O < § < 1L - 0p. Hence, choosing

T =zx%, for every € > O/
_ 00—1'1'8
S_l(x) = 0{x ) as & = «,
i.e. (i) = (ii) when k = -1l.

That (i) = (ii) when Kk > - Up can now be deduced as follows. If
kK>~ 0y and € > 0, then

’ ' o
S @) = z (S .(n)y -8 _(n-1))n
K N -1 -1

]

I 5., m @ ooty 4
ngw

+ S_l(x)[:J:+ZL]I<+l

“ 0 E nK+00—l+E + 0{$K+00+e)

K+0 g+E
0z tI0te

#, for every € > 0.

'haw that (ii) => (i) suppose that for every e > 0,

+
5 (@) = 0@FT90%E) a5 x> =,

al summation,



o K
n)n ' . .
Z Admin converges and represents an analytic function for

3
n=1 n
0’>O’0+K.

Then from

°Z° An" | g(2as-21)

n=1 n° ¢ (5=x)

we see that ¢(8) is non-zero for ¢ > dg.

To show that (ii) = (iii) suppose that k = -1 oxr &k > - gy, and that

ggtrt+e

Y e> 0. SK(x) = 0f{x ) as & - e,

Then, via (i}, also

Y e>o0, § @) = O(wUO+K+l+€

ags &£ > o,
K+l )

S {c)

1 L (8 m) - 5 (n=1))n

nse

- ngﬂg S tn) + SK (x) [x+1] ,

{(71)

) £+l .

i
t~—1

K41
nse

Y S )
nse K

[x+1] SK(w) - 8 16red)

K+1

ggtrtlee
e

0¢ )

for every ¢ > C.



To show that (iii) == (i)}, note first that the estimate,

!

SK(x) = 0($K+1) as x >

is trivial for k > -1, and follows for Kk = =1 from
1 &£ 1 L
s @ =3 L amE +z ) am)
nsx nix
Lo a
= fve]l + 0(1)

as & - o,

Consequently, using proposition 1, and Titchmarch [1], page &, we have

t2e20) | At

L(5-x) nel  n

s5+1 dze

Jm SK(x)
S ——
1l x

o x5 (x)
=3J "k

8+2
1 £

Also, replacing 8 by 8 + 1, and K by K+ 1 in (2), for

+ 1, ®¥3z-2

, Y ()
c (23"2|<) = (S-{*l) K+1 d.’L‘ .
C{s-K) 1 x3+2

from (3) and (4), for ¢ >k + 1, k3 -1,

1 r{28-2x)
s{s+l) L (8~-x}

K+l Clg‘

Jm xSMx)—S {x)
1 x3+2



as « + 2, and so from (5) for o>k + 1, x> -1,

o H {)
1 L {28-2x) i+
(6) s(s+l) «tz(s-x) J g4+2 dx +EK(S)’
1 X
where EK(S) is analytic for o > k.
Finally if {iii) holds, i.e. if
‘ V e>o0, H (@ =0 0", 5 2w,

k+1

then the RHS of (6) is analytic for ¢ > gy + K + €, and hence

must be non-zerc for o > og.

Corollarz:

et z({8) have zeros on o = gy > 0.
Let either kK = -1 or kK > - 0.
Then
(i) Y e>0, B _ (@ = Qe TIITEy us x> o,
(ii) Voe>0, G ) =@ as g oaw,
(iii) ¥V e>0, 5 (@) = Q@ Ty as x>,
{iwv) Y >0, Mk(x) = Q(mK+01me) as & > «,

of of (i) :

Suppose the statement

iC+1 -
VY e>0, H _ (z) =0 017¢

as xr > o=
K+i } ’

2. Then thexre exists €% > 0 such that

Ktltg-e®
} as x> w,

HK‘+1 () = O(x

 from the previous proposition

z(s)




z(s) dis zero free for ¢ > 0o} - €%,

which centradicts the initial assumption. (ii), (iii), and (iv) follow

similarly.

Note 1. Since ©(8) does have zeros on 0 =1 the statements

of the corollary, with 0] replaced by %, are all true.

Note 2. The most familiar functions appearing in the literature

are

S@) =So@ = ) Am), M@ =M = ) wm,
nx nsx
A
r@) =@ = LM, g = gem = [ B,
nsx - nex
Hz) = Hotw) = ) hotmy, G@) = Go(@) = L go(m.
nsx nsx

We now prove an extension of the previous proposition in a

specialised case.

x
Let S%(x) = ) A {z),
nsx
gition 3.
k. fThe following statements are eguivalent:

¥ >0, Hi{x) = O(mc°+8) as X -+ o,
¥ e>0, hix) = 0(m00‘1+€) as & > =,
+
¥V >0, S = G(;c00 €) as & > =,
¥ e > 0, §%({x) = 0(w60+€) as &£ > »,
+
V €50, S@ -8%@) =0 %% as x » o,




Proof:

We have (i) <= (ii) <= (iii) <= (vi)} £rom proposition 2.

From (1),
xhi{x) = H(x) + S{x) + 0(1) as ¥ > =,
Also,
x
(7) xh{r) - S*(x) = Z_A(n) [?{:[
nsx

(V1 ,

- and hence from these two equations

. .
H(x) = 5%(x) - S(@) + 0(x?) as x + o

In the previous proposition (ii) = (i) holds for

very pair of functions X, X such that

K{x) = } k(n), and in this
nsxe '

nse (i) is weaker than (ii), and in the next section we

velop this theme further.

A corresponding result to proposition 3 holds for the

ions

Gx), glx), Mx), M*(x}.
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Note 5.

10.

Turan's conjecture that Wx) > 0, for x > 1, has

(11

been upset by mumerical investigation (Haselgrove, C.B.
but we note in the next section that the argument of Lehmer

and Selberg [1], that G(x) changes sign infinitely often

as ¥ = does not apply to H(x) if RH(%) is true.




11. ;

Further statements eguivalent to RE{0g)

The notion of 'weakness' we mention in note (3), section 1,

manifests itself in higher averages.

: Let 4, @) = ZL%@—,
nsz

and for any integer Xk 2 0 let

A ) = ) A, ().

nLL -1

In this notation,

()

I}
h
-
£
—

H{x)

il

AO {2).
this section we prove:
nhosition 1.

-1, the following statements are eguivalent:

RH (Ug) ;
Cptrte

For every € > Q, Am(x) = 0{x )} as 2 2+ o,

Foceeding to the proof we establish scme helpful lemmas:




S S

B
H
i

the truth of the above statement is seen from the

definition of Ahl(m).

Also,

Agte)y = ) A (K
kex
A ()
= X .
kex ngk
_ Afn) z 1
7
n<e ngks [x]

= 3 M s o)
nLx:

1 A(n
=37et L (n’ (3 ) £ 0(1), as ¥ >,
nex

Py

¢ see the proposition is tryue for »r = 0.

uppose the proposition is true for » = K 2 0.
L@ = L Ak
K(x
E i kR+l Z R(f) (l~%¢R+l
ks T ngk
+ 0| ¥ i
ks
7 Fa 74
- _fga): ' X Aéfl'(f‘”)q*l + 0 R+l
U kgx ngk
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R+l -0

)' . l_(fl) Z(k.—.n)

ngk< (]

(1)

Now

B+l .
bR+2 + z c
1=1

(2) R+2 B+l1,7

c

Pl 4 indepnendent
r

where the coefficients are

from (1) ard (2},

1

1 Ay
(f+2)1] e

o ([2]-n)

A

B+1 @) =

A 4l

"

P
L=1

-

t 2 0.

R+l
a2

{ )

b‘Z'

of b. Consequently,

R+2
4

o tml-m” 4
R+1,1
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Thus it follows from (3} that

. o1 oy e o Re2 R+1
(4) A&im)"€ﬁﬂﬂ;£x =L (@)-m) o
as & o,
Finally,
i A E
I 22 (myomy ™2
i nsx
i
] . B
g - 'Af) (@x-n)~{z} +2
S?) w2 4 3 _Agf) Z(x_n)R+2—t(_l)t{x}t[ﬁzg]
nixe 1<tgR+2
g)(w%fh2+ 7 &%Q-Z F?ﬂ ZxRQHFSPDwaiutM}%Rf_ﬂ
nsE 1stsh+2 0<sgR+2-t
B2~ - 3
g’t) @) 2, ZR;Z] Z(—l)SH: {x}tx +2 ts[R+s2 t] I oAmAd 1
ne

1<tgR+2 OQgsgh+2-%

noted in section 1, for 8 2 0

3-1 8
Yooxmn® T = o)
nsx

Hence

W (w1-my T2 - Y )

Z mRJrz_t} _ O(mR+l)
42 0<8<R+2-¢




Recalling the notation

S (xy = ) Apn®©
. nsa:

we next have

Lemma 2. .

For every integer r 3 -1,

r+1
1 r+1 K Il-x
Ar(.‘l}‘} = W Z K (-1 x SK‘-—l(m) +
K=0
+ O(xr) as gL > o,
A (%) = 1 ) A(n) Pfl £+l xr-}—l—K(“l)r-c N
r {(r+1) ! nex 7 Km0 K
+ 0fxh)
r+1
- 41— K -
=_{_;‘%l_)_'_ ) r:lx +1 K(_l) Z l(n)nK l+ |
T ok=Q nse
+ 0 )
P+l
- 1 r+l), L,k _rtl-g
A4, @) = 5T YEO MR A S ., @ +
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Lemma 3.

For ¢ >7r + 1, and every integer r 2 ~1,

e Ar (@)

1 St 8(5-1)...{8-r-1) c{s-r)

+ Pr(s)

where P}{s) is apalytic for o > »,

Proof:

We have noted in (2), Section 1, that

g(2s-a¢y (7 G )

Z(s-K)y 1 £

dx

~1l, and ¢ > x 4+ 1.

co g ()
L (28--21) [
ST = (8-raK) | —————
T (s-7) 1 xﬁ rHK+L
+ 1, with Kk 2 -1.
PeiC)
L Cea®™ 3 ¢ (20-2r)
J1 acS+l (8-r+x-1) s~}
¢>r+1 with « 3 0.
ently, from lemma 2,
4 (@)
g .
1 s+l daz
r+1 L Yo
_ 1 X r+l (_J)K K-
(r+1)! « i S+1
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where PP{S) is analytic for o > P.

Then from (7) we have for ¢ > ¥ + 1,

o A (x)
. r
(8) S+1
j 1l =z
: r+l -
f - 1 5- el (-]_)K 1 ";(28"21,)
§ (r+1)1 Lo (K (s-r+k~1)  r{s-7)
} =

+ Pr(s)°

Using the 'cover up' rule for partial frections we easily see that

1 I”E’l e O S
(r+l)! ke K {8-r+r~1)
1

T s5(e-1)...(8-r-13 '

nd hence from (8),

w A 1 £ (25-27)
1 x§+l g{s-1)...{s~r~1) r{s~-r)
+ P}(s)

o >r + 1, where PP(S) is analytic for o > r.

of proposition 1l:

ger r z -1 let Tr be the statement:

aptr+
e>O,APM)=LNxU % as & + w,

osition 3, section 1, we have
RH (gg) <=> T_l «=> Tq,

T for all » 3 0. it thus suffices to show

P
el
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Tra = RH(og) for any fized » 2 -1, and this follows

readily from (9).

"
Note 1. With B8 l(x) = i%fl
- nEx
and
B @) =} B, ()
k o k-1
for integer Kk > 0, the method of proof of the preceding

proposition leads to an analogue of lemma (3). Namely,

for o> 2» + 1, and integer r 3z -1,

———— L

LSt T g(s-1)... (s ;-14-1) T(s-m) T 9, (8)

© B (x)
(10) J r 1

1

here Qr(SJ is analytic for ¢ > p. We consequently have

& osition_g.

iny fixed integer r 2 -1, the following statements are equivalent

RH(op) ,

+Po. 5
For every € > @, Brcr) = O(xUO r E) as & > oo,

c.f. Proposition 1.

Although we are concentrating mainly on the Mobius
and the Liouville function the preceding propositions

the class of functions {T(k)} defined for k = 2, 3, ...
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Section 3.

Some results on the oscillatorv behaviour of

certain summatory functions involring u  and A.

Let Ar(x) and Brfx) be defined as in section 2. Let ©

satisfy % ¢

g <1

]

0 has a solution with

and be such that %(S)

A e b ot

gz 0. From propositions 1 and 2, section 2; it follows that
V.e>o0 A, @ = Q@' O,
and ;
rio-€ i
V e>0 B @ =@ ), ’

as ¥ > ». Actually, we can say more than this,

sroposition 1.

r be an integer, 2 2 -1, and let X be any real number. Then
very € > 0,

B () - X LFIO-E

r

8 sign infinitely often as & » <=,

¥ £ > 0, Br(x) = Qx(mr+df€) 358 & < o,

s 4+ 1, 1 20, be defined by

let the Dirichlet series Lr(s)
r-l4g-g
© B _(n) - Kn

Z rol s where 0 < g < .

- 8
L N
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From proposition 1, section 1,

o -
L?(s) = Z ——— = {{g-prtl-g+g)
=] 71
© B @) _
= sj i de - K ¢ {s-r+1l-0+€)
1

Hence, from 10, section 2,

. g -
(1) L) = ST L e TG Kz (s~r+l-0+€) +

:
g
H
i
i
£

+ Qr(s)f

where Qr(s) is regular for g > p.

uppose that the coefficients of the series for Lr(s) are eventually

Then by a classical theoream of Landau, the series has a

one sign.
ine of convergence of the

: 1
first t i

the firs erm in (1), 6-1) (5-2) ... G-Iz le0] ' has

2, oo, r and & =2r + p, where p is a zero

Since r(g) has no real zeros with & 2 0 the first term
real singularities with ¢ > . The second term in (1),
has no singularities at all for ¢ > ¥ + ¢ - €. Hence

f1w5+e),
and the abscissa of

$ no real singularity for ¢ > » + 0 - g,

¢ of the Dirichlet series for I (5) must be less +han or
, r

1+ ¢ - €. Hence Lp(s) is analytic for ¢ > » + g - £, and

{1), £(8) must be non-zeroc for ¢ > ¢ - €, which contradicts

ion of o. If follows that the coefficients of the Dirichlet

tL‘(s) cannot be ultimately of cne sign, and this completes

- an integer, »r 3z -1, and let X be any real number.
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te
Then Y >0, SPCr) -~ K xr+§ €

changes sign infinitely often as & - .

Proof:

This follows since ¢ 3 L,

G M

As a corollary to the method of proof of proposition 1 we also have

Corollarz 2.

Let » be an integer, » 3 -1, ard let X be any real number.

+0 .
Let 1209 2%, 1f Brcn) - K 25700 is eventually cf one sign as

% - <: then RH(oy) is true.
PG .
Let Br(m) - Kz +9o be eventually of one sign as z + o,
Wwith 0y playing the role of ¢ in the equations leading up to

1 1T -
Lr(s) - (8-1}....(s-r-1) (s~} ~ K t(s-r+i-og) +

a8,

} is regular for ¢ > r, As in proposition 1 we then have

ytic for ‘g > gy + r and consequently z(s) ¥ 0 for o > gg-

Analagous results to proposition 1 hold for the

(%)

nding sumatory functions associsted with T for

“eve, where we recall

“ r(k)(n)

e

5 tis) = glks), (o> 1}).
n
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L2 .

However, for k = 2, 2 X, and the cguation corresponding to (190) is

_ 1 L {2s-2r)
LI” (8) - (S-l) (3_2) . (S—r“'l} A (S_P)

- Kg (8-r+l-0+g) + 2 (s).

The pole of Z(28~2r) at s = » + ! prevents the argument in proposition

1l following here in the casa g = %. Bul for o > Y the corres ondin
S| P g

R b i 1 .

result holds.

i.e,

Proposition 2.

Let © satisfy % < ¢ < 1 and be such that £(s) = 0 has a solution

with 0 2 0. Let » be an integer, r % -l. Then for every € > Q,

rig-g
Ar(x) = Ri(w )

to that of proposition 1. A result corresponding to corollary 1

be stated here for the Ap(m), since proposition 2 assumes

and if RH({%) is true it is conceivable that the Ar(x)

ually of one sign as % > for some » > R > -1.

7¢ do have an analogue of coreollary 2, for the Ap(x).

be an integer, » » -1, and let X be any real number,

If Ar(x) ~ K90 g eventually of one sign as




:
:
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Proof:

Similar to that of ccreollarxy 2.

Note 2. These results improve and generalise the result of Lehmer

and Selberg [1}, that By{xr) -~ K changes siga infinitely o<ten

as & > 2, and generalise the well known result that if

H .
1s true.

a—

x . .
b) is either bounded above or below then RH({%)
2

X
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