Section 1.

Some statements equivalent to the quasi-Riemann hypothesis.

As usual in Number Theory, let s be a complex variable, $\sigma = \text{Re} s$, t = Im s. Let ζ be Riemann's zeta function, and, for $1 > \sigma_0 > \frac{1}{2}$, let $\text{RH}(\sigma_0)$ be the statement

$$\zeta(s) \neq 0$$
 for $\sigma > \sigma_0$.

We refer to this statement as the 'quasi-Riemann hypothesis'. With our notation, $RH(\frac{1}{2})$ will then signify the Riemann hypothesis proper.

In this and later sections we have occasion to use the following result for expressing a Dirichlet series as an integral. The proof of this result is a simple application of a well-known technique but is included here for the sake of completeness.

Proposition 1.

Let $\alpha : \mathbb{N} \to \mathbb{C}$ satisfy

$$A(x) = \sum_{n \le x} a(n) = o(x^{\Delta})$$

as $x \to \infty$. Then for $\sigma > \Delta$,

$$\sum_{n=1}^{\infty} \frac{a(n)}{n^s} = s \int_{1}^{\infty} \frac{A(x)}{x^{s+1}} dx .$$

Proof:

For $\sigma > \Delta$,

$$\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}} = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{a(n)}{n^{s}}$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \frac{A(n) - A(n-1)}{n^{s}} \quad (A(0) = 0)$$

$$= \lim_{N \to \infty} \left\{ \sum_{n=1}^{N-1} A(n) \left(\frac{1}{n^{s}} - \frac{1}{(n+1)^{s}} \right) + \frac{A(N)}{n^{s}} \right\}$$

$$= \lim_{N \to \infty} \left\{ \sum_{n=1}^{N-1} s \int_{n}^{n+1} \frac{A(x)}{x^{s+1}} dx + \frac{A(N)}{n^{s}} \right\}$$

$$= s \int_{1}^{\infty} \frac{A(x)}{x^{s+1}} dx,$$

and the function defined by the integral is analytic for $\sigma > \Delta$.

For real K let

$$S_{\kappa}(x) = \sum_{n \leq x} \lambda(n) n^{\kappa}, \quad M_{\kappa}(x) = \sum_{n \leq x} \mu(n) n^{\kappa},$$

$$h_{\kappa}(x) = \sum_{n \leq x} \lambda(n) n^{\kappa-1}, \quad g_{\kappa}(x) = \sum_{n \leq x} \mu(n) n^{\kappa-1},$$

$$H_{\kappa}(x) = \sum_{n \leq x} h_{\kappa}(n), \quad G_{\kappa}(x) = \sum_{n \leq x} g_{\kappa}(n),$$

where λ is Liouville's function, and μ is the Möbius function.

proposition 2.

Let either $\kappa = -1$ or $\kappa > -\sigma_0$. Then the following statements are

(i)
$$RH(\sigma_0)$$
,

(ii)
$$\forall \ \epsilon > 0, \ S_{\kappa}(x) = O(x^{\sigma_0 + \kappa + \epsilon}) \text{ as } x \to \infty,$$

(iii)
$$\forall \epsilon > 0, H_{\kappa+1}(x) = 0(x^{\sigma_0 + 1 + \kappa + \epsilon}) \text{ as } x \to \infty,$$

(iv)
$$\forall \epsilon > 0, M_{\kappa}(x) = 0(x^{\sigma_0 + \kappa + \epsilon}) \text{ as } x \to \infty,$$

(v)
$$\forall \epsilon > 0$$
, $G_{\kappa+1}(x) = 0(x^{\sigma_0+1+\kappa+\epsilon})$ as $x \to \infty$.

Proof:

We show that (i) \iff (ii) \implies (iii) \implies (i). The proof that (i) \iff (iv) \implies (v) \implies (i) is similar.

To show that (i) \Rightarrow (ii) suppose that RH(σ_0) is true and consider first the case $\kappa=-1$. The method in Titchmarch [1], pages 282-283, can be modified to argue that $\zeta(s)=0$ (t^{ϵ}),

 $\frac{1}{\zeta(s)} = 0(t^{\epsilon}) \text{ as } t \to \infty, \text{ for every } \sigma > \sigma_0, \text{ and every } \epsilon > 0. \text{ Now let}$ $f(s) = \zeta(2s)/\zeta(s).$

Then for every $\sigma > \sigma_0$ and any $\varepsilon > 0$, f(s) = 0 (t^{ε}) as $t \to \infty$, and by Titchmarch [1], page 6,

$$\sum_{n=1}^{\infty} \frac{\lambda(n)}{n^s} = f(s) \quad \text{for } \sigma > 1.$$

Also it is clear that f(1) = 0. Using a procedure similar to that in Pitchmarch [1], page 315 we thus get

$$S_{-1}(x) = \sum_{n \le x} \frac{\lambda(n)}{n}$$

$$= \frac{1}{2\pi i} \int_{2-i\pi}^{2+iT} f(\omega+1) \frac{x^{\omega}}{\omega} d\omega + o(\frac{x^2}{T})$$

$$= \frac{1}{2\pi i} \int_{2-iT}^{\sigma_0 - 1 + \delta - iT} + \int_{\sigma_0 - 1 + \delta - iT}^{\sigma_0 - 1 + \delta + iT} + \int_{\sigma_0 - 1 + \delta + iT}^{2 + iT} \frac{x^{\omega}}{w} dw + \frac{x^2}{w} dw + \frac{x^2}{T} ,$$

$$= o(T^{-1 + \varepsilon} x^2) + o(T^{\varepsilon} x^{\sigma_0 - 1 + \delta})$$

as $x \to \infty$, provided $\varepsilon > 0$, and $0 < \delta < 1 - \sigma_0$. Hence, choosing $T = x^3$, for every $\varepsilon > 0$,

$$S_{-1}(x) = 0(x^{\sigma_0 - 1 + \varepsilon})$$
 as $x \to \infty$,

i.e. (i) \Rightarrow (ii) when $\kappa = -1$.

That (i) \Rightarrow (ii) when $\kappa > -\sigma_0$ can now be deduced as follows. If $\kappa > -\sigma_0$ and $\varepsilon > 0$, then

$$S_{\kappa}(x) = \sum_{n \leq x} (S_{-1}(n) - S_{-1}(n-1))n^{\kappa+1}$$

$$= \sum_{n \leq x} S_{-1}(n) (n^{\kappa+1} - (n+1)^{\kappa+1}) + S_{-1}(x) [x+1]^{\kappa+1}$$

$$= 0 \left(\sum_{n \leq x} n^{\kappa+\sigma_0-1+\varepsilon} \right) + 0 (x^{\kappa+\sigma_0+\varepsilon})$$

$$= 0 (x^{\kappa+\sigma_0+\varepsilon})$$

 $\bullet \bullet \bullet \bullet$, for every $\varepsilon > 0$.

To show that (ii) \Rightarrow (i) suppose that for every $\varepsilon > 0$,

$$S_{\kappa}(x) = 0 (x^{\kappa + \sigma_0 + \varepsilon})$$
 as $x \to \infty$.

in, by partial summation,

$$\sum_{n=1}^{\infty} \frac{\lambda(n)n^{\kappa}}{n^{s}}$$
 converges and represents an analytic function for

 $\sigma > \sigma_0 + \kappa$.

Then from

$$\sum_{n=1}^{\infty} \frac{\lambda(n)n^{\kappa}}{n^{s}} = \frac{\zeta(2s-2\kappa)}{\zeta(s-\kappa)},$$

we see that $\zeta(s)$ is non-zero for $\sigma > \sigma_0$.

To show that (ii) \Rightarrow (iii) suppose that $\kappa = -1$ or $\kappa > -\sigma_0$, and that

$$\forall \quad \varepsilon > 0, \quad S_{\kappa}(x) = 0 (x^{\sigma_0 + \kappa + \varepsilon}) \quad \text{as} \quad x \to \infty.$$

Then, via (i), also

$$\forall \epsilon > 0$$
, $S_{\kappa+1}(x) = O(x^{\sigma_0 + \kappa + 1 + \epsilon})$ as $x \to \infty$.

But

$$S_{\kappa+1}(x) = \sum_{n \leq x} (S_{\kappa}(n) - S_{\kappa}(n-1))n$$

$$= -\sum_{n \leq x} S_{\kappa}(n) + S_{\kappa}(x) [x+1],$$

so that

$$H_{\kappa+1}(x) = \sum_{n \leq x} h_{\kappa+1}(n)$$

$$= \sum_{n \leq x} S_{\kappa}(n)$$

$$= [x+1] S_{\kappa}(x) - S_{\kappa+1}(x)$$

$$= 0 (x^{\sigma_0 + \kappa + 1 + \varepsilon})$$

 $w \mapsto w$, for every $\varepsilon > 0$.

To show that (iii) \Rightarrow (i), note first that the estimate,

$$S_{\kappa}(x) = 0(x^{\kappa+1})$$
 as $x \to \infty$,

is trivial for $\kappa > -1$, and follows for $\kappa = -1$ from

$$S_{-1}(x) = \frac{1}{x} \sum_{n \le x} \lambda(n) \left[\frac{x}{n} \right] + \frac{1}{x} \sum_{n \le x} \lambda(n) \left\{ \frac{x}{n} \right\}$$
$$= \frac{1}{x} \left[\sqrt{x} \right] + O(1)$$

as $x \to \infty$.

Consequently, using proposition 1, and Titchmarch [1], page 6, we have

$$\frac{\zeta(2s-2\kappa)}{\zeta(s-\kappa)} = \sum_{n=1}^{\infty} \frac{\lambda(n)n^{\kappa}}{n^{s}}$$

$$= s \int_{1}^{\infty} \frac{S_{\kappa}(x)}{x^{s+1}} dx$$

$$= s \int_{2}^{\infty} \frac{x S_{\kappa}(x)}{x^{s+2}} dx$$
(3)

for $\sigma > \kappa + 1$, $\kappa \geqslant -1$.

Also, replacing s by s+1, and κ by $\kappa+1$ in (2), for s+1, $\kappa>-2$

$$\frac{\zeta(2s-2\kappa)}{\zeta(s-\kappa)} = (s+1) \int_{1}^{\infty} \frac{S_{\kappa+1}(x)}{x^{s+2}} dx .$$

Hence from (3) and (4), for $\sigma > \kappa + 1$, $\kappa > -1$,

$$\frac{1}{s(s+1)} \frac{\zeta(2s-2\kappa)}{\zeta(s-\kappa)} = \int_1^\infty \frac{x S_{\kappa}(x) - S_{\kappa+1}(x)}{x^{s+2}} dx.$$

Prom (1) we easily see

$$H_{\kappa+1}(x) = x S_{\kappa}(x) - S_{\kappa+1}(x) + 0(x^{\kappa+1})$$

as $x \to \infty$, and so from (5) for $\sigma > \kappa + 1$, $\kappa \ge -1$,

(6)
$$\frac{1}{s(s+1)} \frac{\zeta(2s-2\kappa)}{\zeta(s-\kappa)} = \int_{1}^{\infty} \frac{H_{\kappa+1}(x)}{x^{s+2}} dx + E_{\kappa}(s),$$

where $E_{\kappa}(s)$ is analytic for $\sigma > \kappa$.

Finally if (iii) holds, i.e. if

$$\forall \quad \varepsilon > 0, \quad H_{\kappa+1}(x) = 0(x^{\sigma_0 + \kappa + 1 + \varepsilon}), \quad \text{as} \quad x \to \infty,$$

then the RHS of (6) is analytic for $\sigma > \sigma_0 + \kappa + \epsilon$, and hence $\zeta(s)$ must be non-zero for $\sigma > \sigma_0$.

Corollary:

Let $\zeta(s)$ have zeros on $\sigma = \sigma_{\dot{1}} > 0$.

Let either $\kappa = -1$ or $\kappa > -\sigma_1$.

Then

(i)
$$\forall \epsilon > 0$$
, $H_{\kappa+1}(x) = \Omega(x^{\kappa+1+\sigma_1-\epsilon})$ as $x \to \infty$,

(ii)
$$\forall \ \epsilon > 0$$
, $G_{\kappa+1}(x) = \Omega(x^{\kappa+1+\sigma_1-\epsilon})$ as $x \to \infty$,

(iii)
$$\forall \epsilon > 0$$
, $S_{\kappa}(x) = \Omega(x^{\kappa + \sigma_1 - \epsilon})$ as $x \to \infty$,

(iv)
$$\forall \quad \varepsilon > 0$$
, $M_{\kappa}(x) = \Omega(x^{\kappa + \sigma_1 - \varepsilon})$ as $x \to \infty$.

Proof of (i):

Suppose the statement

$$\forall \epsilon > 0$$
, $H_{\kappa+1}(x) = \Omega(x^{\kappa+1+\sigma_1-\epsilon})$ as $x \to \infty$,

Lalse. Then there exists $\varepsilon^* > 0$ such that

$$H_{\kappa+1}(x) = O(x^{\kappa+1+\sigma_1-\varepsilon^*})$$
 as $x \to \infty$,

In hence from the previous proposition

 $\zeta(s)$ is zero free for $\sigma > \sigma_1 - \varepsilon^*$,

which contradicts the initial assumption. (ii), (iii), and (iv) follow similarly.

Note 1. Since $\zeta(s)$ does have zeros on $\sigma = \frac{1}{2}$ the statements of the corollary, with σ_1 replaced by $\frac{1}{2}$, are all true.

Note 2. The most familiar functions appearing in the literature are

$$S(x) = S_0(x) = \sum_{n \leq x} \lambda(n), \quad M(x) = M_0(x) = \sum_{n \leq x} \mu(n),$$

$$h(x) = h_0(x) = \sum_{n \le x} \frac{\lambda(n)}{n}, \quad g(x) = g_0(x) = \sum_{n \le x} \frac{\mu(n)}{n},$$

$$H(x) = H_0(x) = \sum_{n \le x} h_0(n), G(x) = G_0(x) = \sum_{n \le x} g_0(n).$$

We now prove an extension of the previous proposition in a specialised case.

Let
$$S^*(x) = \sum_{n \le x} \lambda(n) \{\frac{x}{n}\}.$$

Proposition 3.

Let $1 > \sigma_0 \geqslant \frac{1}{2}$. The following statements are equivalent:

$$\forall \quad \varepsilon > 0, \quad H(x) = O(x^{\sigma_0 + \varepsilon}) \quad \text{as} \quad x \to \infty,$$

(11)
$$\forall \epsilon > 0, h(x) = 0(x^{\sigma_0 - 1 + \epsilon}) \text{ as } x \to \infty,$$

(11)
$$\forall \epsilon > 0, S(x) = O(x^{\sigma_0 + \epsilon}) \text{ as } x \to \infty,$$

$$\forall \quad \varepsilon > 0, \ S^*(x) = O(x^{\sigma_0 + \varepsilon}) \quad \text{as} \quad x \to \infty,$$

$$\forall \quad \varepsilon > 0, \quad S(x) - S^*(x) = O(x^{\sigma_0 + \varepsilon}) \quad \text{as} \quad x \to \infty,$$

 $\mathbb{R}\mathbb{H}(\sigma_0)$.

Proof:

We have (i) \iff (iii) \iff (vi) from proposition 2.

From (1),

$$xh(x) = H(x) + S(x) + O(1)$$
 as $x \to \infty$.

Also,

(7)
$$xh(x) - S^*(x) = \sum_{n \leq x} \lambda(n) \left[\frac{x}{n} \right]$$
$$= \left[\sqrt{x} \right],$$

and hence from these two equations

(8)
$$H(x) = S^*(x) - S(x) + O(x^{\frac{1}{2}})$$
 as $x \to \infty$.

From (7), (ii) \iff (iv), and from (8), (i) \iff (v), thus completing the proof.

Nete 3. In the previous proposition (ii) \Rightarrow (i) holds for every pair of functions k, K such that

$$K(x) = \sum_{n \le x} k(n)$$
, and in this

sense (i) is weaker than (ii), and in the next section we develop this theme further.

A corresponding result to proposition 3 holds for the functions

G(x), g(x), M(x), $M^*(x)$.

Note 5. Turan's conjecture that h(x) > 0, for x > 1, has been upset by numerical investigation (Haselgrove, C.B. [1]) but we note in the next section that the argument of Lehmer and Selberg [1], that G(x) changes sign infinitely often as $x \to \infty$, does not apply to H(x) if $RH(\frac{1}{2})$ is true.

Section 2.

Further statements equivalent to $RH(\sigma_0)$.

The notion of 'weakness' we mention in note (3), section 1, manifests itself in higher averages.

Let
$$A_{-1}(x) = \sum_{n \le x} \frac{\lambda(n)}{n}$$
,

and for any integer $k \geqslant 0$ let

$$A_k(x) = \sum_{n \le x} A_{k-1}(n)$$
.

In this notation,

$$h\left(x\right) \ =\ A_{-1}\left(x\right) ,$$

and

$$H(x) = A_0(x).$$

In this section we prove:

Proposition 1.

For any fixed integer $r\geqslant -1$, the following statements are equivalent:

For every
$$\varepsilon > 0$$
, $A_{p}(x) = 0(x^{\sigma_0 + r + \varepsilon})$ as $x \to \infty$.

www.proceeding to the proof we establish some helpful lemmas:

wavey integer $r\geqslant -1$,

$$A_{r}(x) = \frac{1}{(r+1)!} x^{r+1} \sum_{n \le x} \frac{\lambda(n)}{n} (1 - \frac{n}{x})^{r+1} + o(x^{r}) \text{ as } x \to \infty.$$

Proof:

For r=-1, the truth of the above statement is seen from the definition of $A_{-1}(x)$.

Also,

$$A_{0}(x) = \sum_{k \leq x} A_{-1}(k)$$

$$= \sum_{k \leq x} \sum_{n \leq k} \frac{\lambda(n)}{n}$$

$$= \sum_{n \leq x} \frac{\lambda(n)}{n} \sum_{n \leq k \leq \lfloor x \rfloor} 1$$

$$= \sum_{n \leq x} \frac{\lambda(n)}{n} ([x] - n + 1)$$

$$= \sum_{n \leq x} \frac{\lambda(n)}{n} (x-n) + O(1)$$

$$= \frac{1}{1!} x^{1} \sum_{n \leq x} \frac{\lambda(n)}{n} (1-\frac{n}{x})^{1} \div O(1), \text{ as } x \to \infty,$$

and we see the proposition is true for r=0.

Now suppose the proposition is true for $r = R \geqslant 0$.

Then

$$A_{R+1}(x) = \sum_{k \le x} A_{R}(k)$$

$$= \sum_{k \le x} \frac{1}{(R+1)!} k^{R+1} \sum_{n \le k} \frac{\lambda(n)}{n} (1 - \frac{n}{k})^{R+1} + o\left(\sum_{k \le x} k^{R}\right)$$

$$= \frac{1}{(R+1)!} \sum_{k \le x} \sum_{n \le k} \frac{\lambda(n)}{n} (k-n)^{R+1} + o(x^{R+1})$$

$$= \frac{1}{(R+1)!} \sum_{n \le x} \frac{\lambda(n)}{n} \sum_{n \le k \le [x]} (k-n)^{R+1} + o(x^{R+1})$$

(1)
$$= \frac{1}{(R+1)!} \sum_{n \le x} \frac{\lambda(n)}{n} \sum_{0 \le k \le [x]-n} k^{R+1} + 0(x^{R+1}) \quad \text{as} \quad x \to \infty.$$

Now

(2)
$$\sum_{k=1}^{b} k^{R+1} = \frac{1}{R+2} b^{R+2} + \sum_{i=1}^{R+1} C_{R+1,i} b^{i}$$

where the coefficients $C_{R+1,i}$ are independent of b. Consequently, from (1) and (2),

(3)
$$A_{R+1}(x) = \frac{1}{(R+2)!} \sum_{n \le x} \frac{\lambda(n)}{n} ([x]-n)^{R+2} + \frac{1}{(R+1)!} \sum_{n \le x} \frac{\lambda(n)}{n} \sum_{i=1}^{R+1} C_{R+1,i} ([x]-n)^{i} + O(x^{R+1})$$

mut

$$\sum_{n \leq x} \frac{\lambda(n)}{n} \sum_{i=1}^{R+1} C_{R+1,i} ([x]-n)^{i}$$

$$= \sum_{n \leq x} \frac{\lambda(n)}{n} \sum_{i=1}^{R+1} C_{R+1,i} \sum_{t=0}^{i} {i \choose t} [x]^{i-t} (-n)^{t}$$

$$= \sum_{i=1}^{R+1} C_{R+1,i} \sum_{t=0}^{i} {i \choose t} [x]^{i-t} (-1)^{t} \sum_{n \leq x} \lambda(n)^{t-1}$$

$$= 0 \left(\sum_{i=1}^{R+1} \sum_{t=0}^{i} x^{i} \right)$$

$$= 0 (x^{R+1})$$

as noted in section 1, $\sum_{n \le x} \lambda(n) n^{t-1} = 0(x^t),$

Thus it follows from (3) that

(4)
$$A_{R+1}(x) = \frac{1}{(R+2)!} \sum_{n \le x} \frac{\lambda(n)}{n} ([x]-n)^{R+2} + o(x^{R+1})$$

as $x \to \infty$.

Finally,

$$\sum_{n \le x} \frac{\lambda(n)}{n} ([x] - n)^{R+2}$$

$$= \sum_{n \leq x} \frac{\lambda(n)}{n} ((x-n) - \{x\})^{R+2}$$

$$= \sum_{n \leq x} \frac{\lambda(n)}{n} (x-n)^{R+2} + \sum_{n \leq x} \frac{\lambda(n)}{n} \sum_{1 \leq t \leq R+2} (x-n)^{R+2-t} (-1)^{t} \{x\}^{t} \begin{Bmatrix} R+2 \\ t \end{Bmatrix}$$

$$\sum_{n \leq x} \frac{\lambda(n)}{n} (x-n)^{R+2} + \sum_{n \leq x} \frac{\lambda(n)}{n} \sum_{1 \leq t \leq R+2} \frac{x^{R+2-t-s}}{0 \leq s \leq R+2-t} (-1)^{s} n^{s} (-1)^{t} \{x\}^{t} \binom{R+2-t}{s}$$

$$\sum_{n \leq x} \frac{\lambda(n)}{n} (x-n)^{R+2} + \sum_{1 \leq t \leq R+2} \sum_{0 \leq s \leq R+2-t} (-1)^{s+t} \{x\}^{t} x^{R+2-t-s} {R+2-t \choose s} \sum_{n \leq x} \lambda(n)^{s-1}$$

But, as noted in section 1, for $s \ge 0$

$$\sum_{n \leq x} \lambda(n) n^{s-1} = o(x^s)$$

. Hence

$$\lim_{n \le \infty} \frac{\lambda(n)}{n} \left(\{x\} - n \right)^{R+2} - \sum_{n \le \infty} \frac{\lambda(n)}{n} (x-n)^{R+2}$$

$$\mathbb{P}\left\{\sum_{\mathbf{i} \leq t \leq R+2} \sum_{0 \leq s \leq R+2-t} x^{R+2-t}\right\} = o(x^{R+1})$$

The lemma now follows from (4) and (5), and the principle of

Recalling the notation

$$S_{\kappa}(x) = \sum_{n \le x} \lambda(n) n^{\kappa}$$

we next have

Lemma 2.

For every integer $r \ge -1$,

$$A_{r}(x) = \frac{1}{(r+1)!} \sum_{\kappa=0}^{r+1} {r+1 \choose \kappa} (-1)^{\kappa} x^{r+1-\kappa} S_{\kappa-1}(x) + 0 (x^{r}) \text{ as } x \to \infty.$$

Proof:

From lemma (1)

$$A_{r}(x) = \frac{1}{(r+1)!} \sum_{n \le x} \frac{\lambda(n)}{n} \sum_{\kappa=0}^{r+1} {r+1 \choose \kappa} x^{r+1-\kappa} (-1)^{\kappa} n^{\kappa} + O(x^{r})$$

$$= \frac{1}{(r+1)!} \sum_{\kappa=0}^{r+1} {r+1 \choose \kappa} x^{r+1-\kappa} (-1)^{\kappa} \sum_{n \le x} \lambda(n) n^{\kappa-1} + O(x^{r})$$

a a l +≯ co

$$A_{r}(x) = \frac{1}{(r+1)!} \sum_{\kappa=0}^{r+1} {r+1 \choose \kappa} (-1)^{\kappa} x^{r+1-\kappa} S_{\kappa-1}(x) + 0 (x^{r}) \quad \text{as} \quad x \to \infty.$$

Lemma 3.

For $\sigma > r + 1$, and every integer r > -1,

$$\int_{1}^{\infty} \frac{A_{r}(x)}{x^{s+1}} dx = \frac{1}{s(s-1)\dots(s-r-1)} \frac{\zeta(2s-2r)}{\zeta(s-r)} + P_{r}(s)$$

where $P_{p}(s)$ is analytic for $\sigma > r$.

Proof:

We have noted in (2), Section 1, that

$$\frac{\zeta(2s-2\kappa)}{\zeta(s-\kappa)} = s \int_{1}^{\infty} \frac{S_{\kappa}(x)}{x^{s+1}} dx$$

for $\kappa \geqslant -1$, and $\sigma > \kappa + 1$.

Writing $s-r+\kappa$ for s in this formula we have

$$\frac{\zeta(2s-2r)}{\zeta(s-r)} = (s-r+\kappa) \int_{1}^{\infty} \frac{S_{\kappa}(x)}{x^{s-r+\kappa+1}} dx$$

for $\sigma > r + 1$, with $\kappa \geqslant -1$.

Honce

(7)
$$\int_{1}^{\infty} \frac{x^{r-\kappa+1} S_{\kappa-1}(x)}{x^{s+1}} dx = \frac{1}{(s-r+\kappa-1)} \frac{\zeta(2s-2r)}{\zeta(s-r)}$$

for $\sigma > r + 1$ with $\kappa \geqslant 0$.

Consoquently, from lemma 2,

$$\int_{1}^{\infty} \frac{A_{r}(x)}{x^{s+1}} dx$$

$$= \frac{1}{(r+1)!} \sum_{\kappa=0}^{r+1} {r+1 \choose \kappa} (-1)^{\kappa} \int_{1}^{\infty} \frac{x^{r+1-\kappa}}{x^{s+1}} + P_{r}(s)$$

where $P_{p}(s)$ is analytic for $\sigma > r$.

Then from (7) we have for $\sigma > r + 1$,

(8)
$$\int_{1}^{\infty} \frac{A_{r}(x)}{x^{s+1}} dx$$

$$= \frac{1}{(r+1)!} \sum_{\kappa=0}^{r+1} {r+1 \choose \kappa} (-1)^{\kappa} \frac{1}{(s-r+\kappa-1)} \frac{\zeta(2s-2r)}{\zeta(s-r)}$$

$$+ P_{n}(s) .$$

Using the 'cover up' rule for partial fractions we easily see that

$$\frac{1}{(r+1)!} \sum_{\kappa=0}^{r+1} {r+1 \choose \kappa} (-1)^{\kappa} \frac{1}{(s-r+\kappa-1)}$$

$$= \frac{1}{s(s-1) - s(s-r-1)},$$

and hence from (8),

for $\sigma > r + 1$, where $P_{p}(s)$ is analytic for $\sigma > r$.

reof of proposition 1:

Tak integer $r\geqslant -1$ let T_{r} be the statement:

Let every
$$\epsilon > 0$$
, $A_{p}(x) = 0(x^{\sigma_0 + p + \epsilon})$ as $x \to \infty$.

I'm proposition 3, section 1, we have

$$RH(\sigma_0) \iff T_{-1} \iff T_0$$

r r r r r for all r \geqslant 0. It thus suffices to show

 $T_{p} \Rightarrow \operatorname{RH}(\sigma_{0}) \quad \text{for any fixed} \quad r \geqslant -1, \quad \text{and this follows}$ readily from (9).

Note 1. With
$$B_{-1}(x) = \sum_{n \le x} \frac{\mu(n)}{n}$$

and

$$B_{k}(x) = \sum_{n \leq x} B_{k-1}(n)$$

for integer $k \ge 0$, the method of proof of the preceding proposition leads to an analogue of lemma (3). Namely,

for $\sigma > r + 1$, and integer $r \ge -1$,

(10)
$$\int_{1}^{\infty} \frac{B_{r}(x)}{x^{s+1}} dx = \frac{1}{s(s-1)\dots(s-r-1)\zeta(s-r)} + Q_{r}(s),$$

where $Q_{m{p}}$ (s) is analytic for $\sigma > r$. We consequently have

Proposition 2.

For any fixed integer $\,r$ \geqslant -1, the following statements are equivalent

(4) $RH(\sigma_0)$,

For every $\varepsilon > 0$, $B_p(x) = O(x^{\sigma_0 + r + \varepsilon})$ as $x \to \infty$.

C.f. Proposition 1.

Although we are concentrating mainly on the Möbius function and the Liouville function the preceding propositions apply to the class of functions $\{\tau^{(k)}\}$ defined for $k=2,3,\ldots$

bу

$$\sum_{n=1}^{\infty} \frac{\tau^{(k)}(n)}{n^{s}} \zeta(s) = \zeta(ks), \quad (\sigma > 1),$$

We have $\tau^{(2)} \equiv \lambda$, and, in a sense, $\tau^{(\infty)} \equiv \mu$.

Section 3.

Some results on the oscillatory behaviour of certain summatory functions involving μ and λ .

Let $A_{r}(x)$ and $B_{r}(x)$ be defined as in section 2. Let $\overline{\sigma}$ satisfy $\frac{1}{2} \leqslant \overline{\sigma} < 1$ and be such that $\zeta(s) = 0$ has a solution with $\sigma \geqslant \overline{\sigma}$. From propositions 1 and 2, section 2, it follows that

$$\forall \quad \varepsilon > 0, \quad A_{p}(x) = \Omega(x^{p+\sigma-\varepsilon}),$$

and

$$\forall \quad \varepsilon > 0, \quad B_{p}(x) = \Omega(x^{p+\sigma-\varepsilon}),$$

as $x \to \infty$. Actually, we can say more than this.

Proposition 1.

Let r be an integer, $r\geqslant -1$, and let K be any real number. Then for every $\epsilon > 0$,

$$B_{\mathbf{r}}(x) - K x^{\mathbf{r}+\overline{\sigma}-\varepsilon}$$

Phanges sign infinitely often as $x o \infty$.

$$\forall \quad \varepsilon > 0, \quad B_{p}(x) = \Omega \pm (x^{p+\sigma-\varepsilon}) \quad \text{as} \quad x \to \infty.$$

Let r > r+1, r > 0, let the Dirichlet series $L_p(s)$ be defined by $L_p(s) = \sum_{n=1}^{\infty} \frac{B_{r-1}(n) - Kn^{r-1+\sigma-\epsilon}}{n^s}, \text{ where } 0 < \epsilon < \overline{\sigma}.$

From proposition 1, section 1,

$$L_{r}(s) = \sum_{n=1}^{\infty} \frac{B_{r-1}(n)}{n^{s}} - K \zeta(s-r+1-\sigma+\varepsilon)$$
$$= s \int_{1}^{\infty} \frac{B_{r}(x)}{x^{s+1}} dx - K \zeta(s-r+1-\sigma+\varepsilon)$$

Hence, from 10, section 2,

(1)
$$L_{p}(s) = \frac{s}{s(s-1)\dots(s-r-1)\zeta(s-r)} - K\zeta(s-r+1-\overline{\sigma}+\varepsilon) + Q_{p}(s),$$

where $Q_{p}(s)$ is regular for $\sigma > r$.

Suppose that the coefficients of the series for $L_p(s)$ are eventually of one sign. Then by a classical theorem of Landau, the series has a singularity at the real point on the line of convergence of the series. But the first term in (1), $\frac{1}{(s-1)(s-2)\dots(s-r-1)\zeta(s-r)}$, has singularities at $s=1;\,2,\,\ldots,\,r$ and $s=r+\rho$, where ρ is a zero of $\zeta(s)$. Since $\zeta(s)$ has no real zeros with $s\geqslant 0$ the first term has no real singularities with $\sigma>r$. The second term in (1), $\zeta(s-r+1)-\sigma+\varepsilon$, has no singularities at all for $\sigma>r+\sigma-\varepsilon$. Hence $\zeta(s)$ has no real singularity for $\sigma>r+\sigma-\varepsilon$, and the abscissa of invergence of the Dirichlet series for $\zeta(s)$ must be less than or $\zeta(s)$ from (1), $\zeta(s)$ must be non-zero for $\sigma>\sigma-\varepsilon$, which contradicts definition of σ . If follows that the coefficients of the Dirichlet less for $\zeta(s)$ cannot be ultimately of one sign, and this completes $\zeta(s)$

T S

Then
$$\forall \epsilon > 0$$
, $B_p(x) - K x^{p+\frac{1}{2}-\epsilon}$

changes sign infinitely often as $x \to \infty$.

Proof:

This follows since $\bar{\sigma} \geq \frac{1}{2}$.

As a corollary to the method of proof of proposition 1 we also have Corollary 2.

Let r be an integer, $r\geqslant -1$, and let K be any real number. Let $1\geqslant \sigma_0\geqslant \frac{1}{2}$. If $B_p(x)-Kx^{p+\sigma_0}$ is eventually of one sign as $x\to\infty$, then $\mathrm{RH}(\sigma_0)$ is true.

Proof:

Let $B_{p}(x) = K x^{p+\sigma_0}$ be eventually of one sign as $x \to \infty$. Then with σ_0 playing the role of $\bar{\sigma}$ in the equations leading up to (1) we find

$$L_{p}(s) = \frac{1}{(s-1)...(s-r-1)\zeta(s-r)} - K\zeta(s-r+1-\sigma_{0}) + Q_{p}(s),$$

 $G_p(s)$ is regular for $\sigma > r$. As in proposition 1 we then have analytic for $\sigma > \sigma_0 + r$ and consequently $\zeta(s) \neq 0$ for $\sigma > \sigma_0$.

Analagous results to proposition 1 hold for the three-ponding summatory functions associated with $\tau^{(k)}$ for $t \in \{1, 4, \ldots, w\}$ where we recall

$$\sum_{k=1}^{\infty} \frac{\tau^{(k)}(n)}{n^{s}} \zeta(s) = \zeta(ks), \quad (\sigma > 1).$$

However, for $k=2, \tau^{(2)}\equiv \lambda$, and the equation corresponding to (10) is

$$L_{r}(s) = \frac{1}{(s-1)(s-2)\dots(s-r-1)} \frac{\zeta(2s-2r)}{\zeta(s-r)} + K\zeta(s-r+1-\sigma+\varepsilon) + P_{r}(s).$$

The pole of $\zeta(2s-2r)$ at $s=r+\frac{1}{2}$ prevents the argument in proposition 1 following here in the case $\overline{\sigma}=\frac{1}{2}$. But for $\overline{\sigma}>\frac{1}{2}$ the corresponding result holds.

i.e.

Proposition 2.

Let $\bar{\sigma}$ satisfy $\frac{1}{2} < \bar{\sigma} < 1$ and be such that $\zeta(s) = 0$ has a solution with $\sigma \geqslant \bar{\sigma}$. Let r be an integer, $r \geqslant -1$. Then for every $\varepsilon > 0$,

$$A_{r}(x) = \Omega_{\pm}(x^{r+\overline{\sigma}-\varepsilon})$$

 $\quad \text{as } x \to \infty.$

Proof:

Finilar to that of proposition 1. A result corresponding to corollary 1 cannot be stated here for the $A_{p}(x)$, since proposition 2 assumes 1. If, and if $\mathrm{RH}(\frac{1}{2})$ is true it is conceivable that the $A_{p}(x)$ eventually of one sign as $x \to \infty$ for some $r \geqslant R > -1$.

wer, we do have an analogue of corollary 2, for the $A_{p}(x)$.

Let r be an integer, $r \ge -1$, and let K be any real number. If $a_p(x) - Kx^{p+\sigma_0}$ is eventually of one sign as then $RH(\sigma_0)$ is true.

Proof:

Similar to that of corollary 2.

Note 2. These results improve and generalise the result of Lehmer and Selberg [1], that $B_0(x) - K$ changes sign infinitely often as $x \to \infty$, and generalise the well known result that if $\frac{H(x)}{x^2}$ is either bounded above or below then $\mathrm{RH}(\frac{1}{2})$ is true.

References

Backlund, R.

[1] Über die Beziehung zwischen Anwachsen und Nullstellen der Zetafunktion, Öfversigt Finska Vetensk. Soc. 61, (1918-1919), No. 9.

Berlowitz, B.

[1] Extensions of a theorem of Hardy, Acta. Arith. 14, (1967-1968), p. 203-207.

Berndt, B.C.

[1] On the zeros of Riemann's zeta-function, Proc. Amer. Math. Soc. 22, (1969), p. 183-188.

Beuring, A.

[1] Analyse de la loi asymptotique de la distribution des nombres premiers generalises, Acta. Math. 68, (1937), p. 255-291.

Braun, P.B.

- [1] See A. Zulauf [1].
- [2] Unpublished notes.
- [3] (with A. Zulauf) A problem connected with the zeros of Riemann's zeta-function, Proc. Amer. Math. Soc. 36, (1972). No. 1, p. 18-20.
- [4] A series representation for Riemann's E-function, Mathematics Research Report, Univ. Of Waikato, No. 7, (1972).
- [5] (with A. Zulauf) An elementary connection between the orders of M(x) and $\psi(x) x$, Mathematics Research Report, Univ. of Waikato, No. 58, (1978).
- [6] See A. Zulauf [6].

Davenport, H.

[1] Multiplicative Number Theory, Markham Publishing Co. 1967.

Edwards, H.M.

[1] Riemann's Zeta Functions, Academic Press, 1974.

Formenko, O.M.

[1] Two hypotheses in the theory of prime numbers, (Russian), Rev. Math. Pures Appl. 6, (1961), p. 745-746.

Frankel, J., and E. Landau.

[1] Les suites de Farey et le problème des nombres premiers, Göttinger Nachrichten. (1924), p. 198-206. Gelfond, A.O., and Yu. V. Linnik.

[1] Elementary Methods in Analytic Number Theory. Rand McNally and Co., (1965).

Haselgrove, C.B.

[1] A disproof of a conjecture of Polya, Mathematika, 5, (1958), p. 141-145.

[2] Tables of the Riemann zeta function, Royal Soc. Math. Tables, Vol. 6. (1960), U.P. Cambridge.

Huxley, M.N.

[1] On the difference between consecutive primes, Inventiones math. 15, (1972), p. 164-170.

Ingham, A.E.

[1] Reviews in Number Theory, Amer. Math. Soc. Vol. 4, Review article N. 44-16, p. 276.

Jahnke, Emde, and Losch.

[1] Tables of Higher Functions, ((vi) edition), McGraw-Hill, (1960).

Jutila, M.

[1] On Linnik's constant, Math. Scad., 41, (1977), p. 45-62.

Kopriva, J.

[1] O jedom vztahu Fareyovy rady k Riemannove domnence o nulovych bodech funkce ξ, Časopis pro pestovani matematiky.78, (1953), p. 49-55.

Lehmer, D.H., and S. Selberg.

[1] A sum involving the function of Möbius, Acta. Arith. VI (1960), p. 111-114.

Le Veque, W.J.

[1] Reviews in Number Theory, Amer. Math. Soc., Vol. 4, (1974), p. 335-367.

Levinson, N.

[1] On Theorems of Berlowitz and Berndt, Jour. No. Theory 3, (1971), p. 502-504.

Littlewood, J.E.

[1.] Quelques conséquences de l'hypothèse que la fonction $\zeta(s)$ de Riemann n'a pas de zéros dans le demi-plan $R(s) > \frac{1}{2}$, C.R. 154 (1912), p. 263-266.

Montgomery, H.L.

[1] Review 3338, Math. Reviews.45, (1973), p. 613.

Selberg, S.

Über eine Vermutung von P. Turan, Norske Vid. Selsk. Forh., Trondheim 29.(1956), p. 33-35.

Spira, R.

[1] The integral representation for the Riemann E-function, Jour. No. Theory. 3, No. 4, (1971), p. 498-501.

Titchmarch, E.C.

- [1] The Theory of the Riemann Zeta-function, Oxford 1951.
- [2] The Theory of Functions, O.U.P. (1939).

Zulauf, A.

- [1] (with P.B. Braun) General Theorems on Special Divisor Problems, Mathematics Research Report, Univ. of Waikato, No. 57, (1978).
- [2] Unpublished notes.
- [3] See P.B. Braun [3].
- [4] The Distribution of Farey Numbers, Journal für die reine und angewandte Mathematik, Band 289, p. 209-213.
- [5] See P.B. Braun [5].
- [6] (with P.B. Braun) Generalized Integers and Generalized Logarithms Mathematics Research Report, Univ. of Waikato, No. 59 (1978).