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Note the algebraic identity

Z a()A(n) = 1 AZ(N) + —Z a2(n), where A(N) = z a(n).
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Point-wise, for o > 0,
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Also, for 6>1/2,
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Thus, for 6>1/2,
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Using the well-known theorem on Dirichlet series half planes of convergence, since for ¢ >0
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On the other if ¢ had a zero in 0>1/2, s=1-A+it, say, we may raise the possibility that
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I\111_r>r010 A, e {(2A + itp), which would contradict (1) .

n=1 r=1

The assumption of a zero provides possible conditions for convergence in that the inner sum tends
to zero as n—oo,

We may express this as
Conjecture:

If 0<A<1/2 and {(A+it,) = 0 then
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Corollary to conjecture:
RH.
Notes

If we consider any one of the uncountable number of Dirichlet series of the form

Ls(s) = z %,where 8(n) € {—1,1} we have
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which shows up C as the common ‘residue’ of an uncountable number of processes.
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The prime decomposition of all the analytic numbers in order is also an uncountable feat for
arithmetic.
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