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Introduction 

The upshot of this is that for practical purposes the Riemann hypothesis and the simplicity of the 

zeros will never be contradicted by numerical calculation. 

One step up at a deeper theoretical logical level the talk about the smoothness of distribution of the 

prime numbers turns out to be a red herring – a product of the passion number theory has for 

asymptotic estimates- the distribution of primes couldn’t be any worse or any better as we see we 

cannot think about all the primes in one go – even with the help of the Riemann zeta function. 

Pure mathematics as taught is comfortable mapping one system into another preserving the shape 

of the initial system in terms of binary operations and ordering and maintaining a common base 

logic. 

However, as we have discussed Braun [1], in mapping the rational numbers into the real numbers 

we require more in the way of logical assumptions at the theoretical level as we go beyond the 

inductive reach of arithmetic dealing with properties of uncountable entities. 

We see shortly a true result using the full power of analysis, which has an interpretation in 

arithmetic, may be true or undecidable in arithmetic. 

 This is where intuitionism, and finiteism may come into play. Undecidability in arithmetic is seen 

as something just as natural as the natural numbers. 

Analytic results which have interpretation in arithmetic but no proof in arithmetic. 

Arithmetic has two well known states:- 

The historical state where irrational numbers simply do not exist and the natural state where they 

are imbedded in the real numbers preserving the binary operations and the ordering.  

Examination of the constructions involved in defining these two systems reveals that they may be 

considered as separate axiomatic systems –albeit closely related. 

In relationship to each other, arithmetic and complex analysis have the property that in practical 

theory no contradiction of a numeric nature is possible between the two systems. 

The term ‘practical theory’ is used here to imply that all sequences and series are prescribed or 

defined inductively via rational numbers. For example, the analytical theory of the Riemann zeta 

function deals with series which are essentially defined inductively. 
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It is practical theory in the sense that we are dealing with entities which take values and those 

values may be pointed to by rational approximations – an inductive and arithmetic activity. 

This distinction is made relative to a higher conceptual level where general sequences and series 

are discussed, relating to some external properties which they do or do not have - for example, 

Cauchy convergence. 

Some consider the natural numbers of the rational numbers and the natural numbers of the real 

numbers to be essentially the same natural numbers. 

This is a safe attitude in that essentially numerical results gained by analytical methods are covered 

by inductive arguments from the base arithmetic but context is important. We may use the 

inductive arguments of arithmetic on prescribed series to prove there is no contradiction to be 

found in arithmetic derived from complex analysis, but the strength of such results in arithmetic is 

only one of true or undecidable if we disavow the existence of irrational numbers and remain in the 

deductive system of arithmetic. We need to be careful what we allow into our universe of 

enlightenment when we are talking about properties of ‘natural numbers’. 

We show that RH is undecidable in arithmetic and that RH is without contradiction in the analytic 

realm. 

Numerical analysis involving estimations for the values of complex functions defined through 

prescribed (inductively defined) series is an activity in arithmetic. 

A clue which points to the solution of the problem of RH is that Riemann was able to sit down and 

calculate the real values of the first few complex zeros of the zeta function. In estimating these zeros 

he was essentially using the inductive arguments of arithmetic without the higher assumptions of 

real and complex analysis. The imaginary parts of the zeros were approximations, but in principle, 

their values could be refined to higher degrees of accuracy. This activity is quite clearly inductive 

and arithmetical. Indeed, we have results that so many million consecutive zeros lie on σ=1/2 using 

numerical analysis and inductive arguments from the practical theory of the Riemann zeta function. 

That the Riemann hypothesis (RH) may in some sense be undecidable does not have much openly 

reported discussion or literature from mainstream number theorists.  

Let Θ = lub{ θ: ζ(σ+it)≠0 for σ>θ}. We know that 1/2≤Θ≤1. 

Titchmarsh [2] shows caution when he writes ‘It will be seen that a perfectly coherent theory can 

be constructed on this basis (Riemann Hypothesis), which perhaps gives some support to the view 

that the hypothesis is true’. 

A corresponding observation applies for any Θ in the range 1/2≤Θ≤1.  

We propose here an argument with a relatively uncomplicated structure:  

 

(i)   Two axiomatic systems UD1 (part of inductive arithmetic Q) and UD2 (part of complex 

analysis) 



(ii)  No numerical result in UD1 will find contradiction in UD2 and no numerical result in UD2 will 

find contradiction in UD1 

(iii)   In UD1, no assumed rational value of Θ in [1/2, 1] leads to contradiction 

(iv)  All computed zeros of ζ in the critical strip lie on σ=1/2 

(v)   A corollary implies all such computed zeros will be simple. 

The precise composition of  UD1 and UD2 is not so important as the key immutable truth that no 

irrational  number exists in UD1.  

If we have a proof in UD1 of such and such there cannot be any content in the proof implying the 

existence of an irrational number. A purported proof in UD1 which necessarily violates this is either 

false in UD1 or unprovable in UD1. We cannot undo our knowledge of UD2 but we are able to hold 

that knowledge at arms length in UD1. 

A neglect of this simple definition obscures an explanation of RH. 

Working definitions for UD1 and UD2 

UD1 - The inductive arithmetic of the rational field Q including numerical work involving series 

approximations to analytic functions defined inductively via prescribed power series. 

UD2 – All the acceptable complex analysis required to develop the theory of the Riemann zeta 

function.  

We can of course informally use power series willy nilly in arithmetic and go ahead in arithmetic 

getting approximations for values like ζ(2). We notice a numerical trend in this particular 

approximation activity but that is all.  

We know from such things as the Skewes number that theory sometimes trumps numerical trends. 

The rational status of ζ(2) in UD1 is undecidable in UD1 because it necessarily involves the 

existence of an irrational number – namely ζ(2). 

Then if we have an arithmetic function θ(x) and a hypothetical asymptotic estimate  

θ(x) = x + ζ(2)x1/2 + O(1)  as x → ∞ 

the estimate is unprovable/undecidable  in UD1. 

In UD2 the value ζ(2) is exact but in UD1 if we focus on the truncated series it is the outcome of an 

activity (discovering a numerical trend) but not going beyond this.  

The case we will be dealing with is quite closely related to this hypothetical example with the minor 

variation that the rational status of γ (Euler’s constant) is undecidable in UD1 not because we know 

its rational status but because we need to venture into UD2 to pose the question about its status. 

For example, for the divisor function d(n), we have the well known analytic result 



∑ d(n)

n≤x

= xln(x) + (2γ − 1)x + O (x
1
2)  as x → ∞. 

If we set l(x) = ∑
1

n
n≤x

, a corresponding  analytic result is 

∑ d(n)

n≤x

= xl(x) + (γ − 1)x + O (x
1
2)  as x → ∞. 

Ignoring any possible difficulties with the error term, the constant term Euler’s constant γ on the 

RHS makes the RHS inextricably linked to the analytic universe. Indeed, to ponder γ rational and 

provable in UD1 inevitably leads to circular argument. We cannot define γ exactly in UD1 without 

explicitly or implicitly referencing the natural logarithm and this function is not defined in UD1 

except the trivial ln(1)=0. 

Thus in UD1, 

∑ d(n)

n≤x

= xl(x) + O(x1) as x → ∞. 

is the best possible  ‘power’ type asymptotic result.  

We reintroduce the following notation from Braun [1] and the well known result: 

φ(x) = ∑ ln (p)
p≤x

p prime

= x + |O(xΘ) as x → ∞ 

where the symbol | means Θ is the least upper bound of numbers Δ such that 

∑ ln (p)
p≤x

p prime

= x + O(xΔ) as x → ∞. 

We know that Θ is the least upper bound of numbers Δ such that ζ(s) is zero free for >Δ where  

as usual s=σ+it and the assumption 1/2≤Θ≤1 cannot be contradicted in arithmetic.  

We also know from the analytic theory with  

M(x) =  ∑ μ(n)

n≤x

. 

where μ denotes the Möbius function that  

M(x) = |O(xΘ)as x → ∞. 

This latter relationship is important because it establishes a direct relationship between the 

placement of the zeros of ζ and the asymptotic growth rate of a purely arithmetic function. 

Now we also have  



∑ l (p)
p≤x

p prime

= [x] − γπ(x) + |O(xΘ) as x → ∞, 

where π(x) is the prime number counting function.  

The best possible order estimate in UD1 is  

∑ l (p)
p≤x

p prime

= O(x1) as x → ∞. 

We cannot get around γ to establish the order of the remainder term. 

We do not need to think about the value of γ, it is cannot be defined in UD1. 

In other words an order estimate of the form  

∑ l (p)
p≤x

p prime

= O(xΔ) as x → ∞ 

with any Δ:1/2≤Δ<1 is undecidable in arithmetic. 

The possible result  

∑ l (p)
p≤x

p prime

= |O(x1) as x → ∞ 

is then also unprovable in UD1. 

Thus in UD1 we may choose any rational value for Θ in [1/2, 1] without contradiction. 

By similar argument and the basic theory of ζ regarding the Möbius sum function M(x) it follows 

that M(x2) = O(x) as x → ∞, cannot be contradicted in arithmetic. 

 Hence, all computed zeros in the critical strip will be simple zeros. 

  



Notes 

We see the undecidability discussed here is quite concrete in nature. 

In simple terms, numerical analysis is used as an interface between arithmetic and analysis. 

Arithmetic is the base where indisputable true theorems are put together. The construction of the 

real and complex numbers brings in a level of doubt because our arithmetic conversations can only 

ever include a countable number of entities. However, we are able to use the inductive strength of 

arithmetic via numerical analysis to be satisfied that the single analytical system of complex 

variable involving prescribed series cannot produce numerical contradiction. 

Thus the search for a higher abstract theory in which to give an ‘analytic’ proof of RH in the 

philosophical sense would necessitate assumptions outside of those required for complex analysis. 
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