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The Riemann hypothesis is undecidable in arithmetic(v) 

by 

 Dr Peter Braun 

Notation and usage 

Arithmetic and PA each denote finite rational Peano arithmetic, CV denotes the complex 

variable theory we need in modelling arithmetic primes via the theory of the ζ.  RH denotes the 

Riemann’s hypothesis that all zeros of ζ in the critical strip lie on Re{s} = 1/2.  

We use the restricted Landau notation O(N∆), o(N∆), Ω(N∆) and Ω+
−

 (N∆) and within the context 

of the real or rational numbers, ∆ is referred to as the order or asymptotic order of the estimate. 

The appearance here of the exponent ∆ involves x∆ = exp(∆(ln(x)) which is outside of PA. 

When we use the above notation in PA with rational ∆=p/q, we define for example 

M(N) = O(Np/q) to mean |M(N)|q =  O(Np) as N → ∞. 

In the context of this notation we omit ‘as N → ∞’ as this condition is always the case.  

When ε occurs it is an arbitrarily small number greater than zero and we may assume it is 

always rational. 

 

The Mobius sum function of arithmetic  

The Mobius function μ may be defined in elementary number theory on natural numbers by 

μ(1) = 1;  μ(n) =  (−1)r if n is the exact product of r distinct prime numbers, else μ(n) = 0.  

In unique factorisation, if n = p1
α1p2

α2 … … pr
αr  (n > 1) then since μ is weakly multiplicative 

∑ μ(g)

g|n

= ∏ (1 +
μ(pk

1)

pk
1

1≤k≤r

+
μ(pk

2)

pk
2 + ⋯

μ(pk
αk)

p
k
αk

) = 0. 

Then, with [ ] denoting the greatest integer function, and counting the number of times μ(n) 

appears in the double summation, 

1 = ∑ ∑ μ(k)

g|k1≤k≤N

= ∑ μ(n)[
N

n
1≤n≤N

]   (N ≥ 1).  

The collective information these equations provide is that every number except 1 is divisible by 

a prime number. In other words, every number greater than 1 is either a prime or a composite. 

We cannot necessarily expect to derive too much information about prime numbers from this 

without further input, and, historically if not necessarily, this has come from real and complex 

analysis and the use of the logarithm. 
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Another definition for μ for N>1, following from the last equations is:- if  

∑ μ(n) [
N

n
]

1≤n<N

=  

   2 then  μ(N) =   −1,

   1 then  μ(N) =       0,
   0 then   μ(N) =      1.

  

This latter definition provides a way of obtaining the value of μ(N) using all the preceding μ 

values thus hinting that the inductively derived  μ appears to depend on an increasing  amount 

of non-trivial decision making. The value of μ(N) depends on the prime factorisation of N and 

there is no way of expressing this value without in some way applying a definition of  μ(N) 

either directly or indirectly and thus knowing some things about the prime number 

decomposition of N. 

For example we need to know which numbers are primes prior to determining the value of μ on 

composite numbers. 

We have a stepwise generation of {μ(1), μ(2), μ(3), …} with decision making through calculation 

at each step. 

Unlike the open ended sequence {1,2,3,…} we appear to require  an overall increasing amount of 

knowledge K(N) deriving the first N values in the μ sequence in the sense that K(N)→∞ as 

N→∞. 

We might think of the μ values as ‘non-inductive’ or ‘intelligent’. We discuss aspects of this in  

Braun ([1], [2], [3], [4] & [5]).  In particular we note that the ‘limit’ μ values and the ‘limit’ π 

values may be derived from each other in PA and since the ‘limit’ π values define the ordering of 

the logarithms of the primes we would expect the arithmetic μ values to be such a series. We 

pick up this point in proposition 1 (corollary 2). 

Numerical value of numbers 

The value of a number is quite an abstract notion in the construction of the number systems, 

and value is defined initially in terms of the ordering of natural numbers and counting. The 

natural number b>a, if there exists k such that a+k = b. This simple definition follows through 

in the constructions of the integers, rational numbers and real numbers. We also note that in the 

ordering of the real numbers we are assuming an ability to distinguish between an un-countable 

number of entities, not something which can be established inductively. What we do inductively 

in arithmetic is define the notion of a rational Cauchy sequence which then leads on to the 

construction of the real numbers. In the real field the notion of value is somewhat tenuously 

associated with the unique place in the ordering. 

For rational numbers when we want to give value a clear numerical definition, we make use of 

‘signed distance from the origin’ as in d(a,0) = a, and with a>b, d(a, b) = d(a)-d(b). We may 

obtain a comparable  d definition for irrational numbers α through the limit process by  

d(α, 0) =  limn→∞ d(αn , 0) = limn→∞ αn = α    but in computation the limit values of an 

extended d function d(α,0) can only be approximated numerically for irrational α. 

We want the irrational real numbers to have  ‘values’ as an extension of this notion but  we can 

only approximate these ‘imaginary’  values in PA to a degree of accuracy via the rational Cauchy 

sequences which define them. We define the real numbers and then overlay the ordering back 

on the rational numbers to support the imaginary notion of exact value on the irrational real 

numbers. The irrational numbers are viewed as place holders in the ordering having the 
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required properties in theoretical work with substance but not numerical value. In formulae the 

irrational numbers of particular interest have labels such as π,  e, γ and so on. If they are not too 

interesting, we may use (CS) or some label constant like A to denote a rational Cauchy sequence 

with rational status unknown. 

Proposition 1 

∑ |μ(n)|

1≤n≤N

=
6

π2
N + o(N) as N → ∞.       

Proof  

See for example Insuk K. and Cho M.H. [1]* and Braun [3].  

* the internet draft version the writer viewed  had some awkward typographical errors and 

omissions but overall the argument looked to be correct, and, in Braun [3] we note the 

similarity with a proof of the prime number theorem. 

Note (added June 2020) 

Tenenbaum [1] (page 46) uses elementary methods to obtain the stronger result 

∑ |μ(n)|

n≤N

=   
6

π2
N + O(√N) by deriving the formula ∑ |μ(n)|

n≤N

= ∑ [
μ(n)

n2
]

n≤√N

.    

 

 

Corollary 1  

Let 

M+(N) = ∑ μ(n)
n≤N

μ(n)>0

 and M−(N) = ∑ μ(n)
n≤N

μ(n)<0

 .   

Then 

M+(N) =
3

π2
N + o(N)     and M−(N) =

−3

π2
N + o(N) .        

Proof 

This follows using the well -known analytic result M(N) =M+(N) + M−(N)= o(N). 

Corollary 2 

M(N) = o(N) and Ng(N)= o(N) are both undecidable in PA.  

Proof 

In the interpretation of corollary 1, the irrational number 3/ π2 is simply a place holder for this 

theoretical result, not altogether different from a region of painting in an artist’s picture:- the 
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mathematical result is the art  work and 3/ π2  is one of the components which adds to the 

appeal of the end result. But 3/ π2 does not have a numerical value: - it is an irrational number 

and exists at a different conceptual level. We are justified in saying 3/ π2 exists because we have 

a non-trivial definition in a formal language and reasoning system but it does not have 

substance in a numerical sense. From the point of view of numerical measurement, the two 

terms on the RHS of the last equation are essentially incompatible. 

3/ π2 is a place holder is the sense that we have M+(N) = (CS)N + o(N),   where (CS) denotes a 

Cauchy sequence but the right hand side of the equation cannot express values in PA since  (CS) 

is irrational. 

Hence, each of the estimates    

M+(N) =
3

π2
N + o(N) and   M−(N) =

−3

π2
N + o(N)  is undecidable in PA.       

The sum of these two terms, M(N), cannot be resolved in PA manipulation  as the leading terms 

cannot be recognised in PA. Hence M(N)=o(N) is undecidable.  

The Ng(N)= o(N) un-decidability  result follows using Abel summation (end of proof). 

From the early comments above about the M function being equivalent to the π counting 

function and this result, we conclude that the inductive sequence {μ(1), μ(2), μ(3) ……} does not 

provide the information in PA necessary for non-trivial o, O and Ω asymptotic estimates of the 

∆>0 variety. 

 

Note 

At this point, undecidable means it is futile to look for a proof bounded by PA but we know that 

both results are provable in real analysis. We might think it prudent to replace undecidable by 

unprovable in this context but the ongoing discussion will justify the choice of word here. 

Modelling the arithmetic prime numbers in analytical number theory 

The complex variable theory around the Riemann zeta function is a modelling of the finite but 

unbounded internal world of the arithmetic prime numbers. It is inductively based, tracing all 

the way back to equivalence classes of rational Cauchy sequences in the heartland of arithmetic. 

With this orientation we use the subscript PA for arithmetic entities and the subscript CV for 

analytic entities. Clearly for N=1,2, 3 ….. 

μPA(N) = μCV(N) in inductive arithmetic and likewise MPA(N) = MCV(N). 

In CV manipulations involving lim F{MCV(N)} we do not have a meaning for lim μPA(∞) even 

though the results are correct in CV. e.g. 

1

ζ(s)
= s ∫

MCV(x)

xs+1

∞

1

dx    (Re{s} > 1). 

We take is as read that if we have a result about rational numbers derived in complex variable 

theory which has numerical interpretation  then we will not be able to produce specific 
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numerical calculations which contradict the result. This is the best outcome we can hope for and 

has that certainty, simply due to the inductive nature of constructing the real and complex fields 

and the P or ~P strategy in progressing standard arguments. Arithmetic may also use indirect 

arguments but these are used in arithmetic without use of limiting processes. An exact result in 

CV which has numerical interpretation is simply a sophisticated generalisation of a result which 

cannot be contradicted numerically in PA. 

 

Intuitively, because of the inductive nature of the roots of arithmetic we might expect a better 

matching of the complex analytic theory to problems of an additive nature in arithmetic 

compared to results and problems of a multiplicative nature, which may be less sympathetic to 

yielding answers in this realm. The stepwise uniqueness of factorisation of natural numbers is a 

result provable in arithmetic (Davenport [1]).  

 

We have more direct conversation in modelling PA in that static universe generated by axioms, 

definitions, standard logic and a much stricter language compared to modelling aspects of the 

external world which has more movable parts, but the notion of matching or alignment is 

applicable in both cases. 

 

In examining the application of the theory of the Riemann zeta function and the analytic primes 

compared to the arithmetic primes we find a point in the decision making where the ζ function 

is no longer relevant and we need to call on PA to resolve the proposition RH:- an important 

case where un-decidability in PA carries weight in CV. Sometimes undecidable in PA means 

unprovable in PA and sometimes it means undecidable full stop. 

 

When we run into anomalies between PA and CV in numerical problems there is the necessity to 

reconcile the anomaly in relation to the P or ~P steering wheel, rather than rejecting outright 

some undecidable assumption leading to the anomaly. In the theory of the Riemann zeta 

function in modelling the analytic primes the ‘cracks’ in differences between PA and CV become 

apparent on the line Re{s}=1/2. The resolution of the dispute on this boundary leads to an 

unusual outcome for the Riemann hypothesis.  

Background 

The advance of a non-trivial Ω asymptotic order estimate for MCV(N) stems from the functional 

equation for ζ. 

The deriving of the functional equation through an application of   

θ(1/x) = √x θ(x) ,   where θ(x) = ∑ e−n2πx

∞

n=−∞

    x > 0 ,     is far removed from PA .    

With the place holders √x, π and e appearing in the θ identity, the ζ functional equation may as 

well be declared an extraordinary result in logic and language for PA to digest, yet accepted as 

pointwise reliable in numerical verification. 

The existence of zeros on Re{s} =1/2 only has a tenuous connection with the arithmetic Möbius 

function and it is the functional equation and the Riemann 𝚵 function and finding the sign 

change in 𝚵(t) which produces a zero on Re{s} = ½ and we only need one zero to get a non-
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trivial ∆ type  Ω result for MCVN). The existence of a zero of ζ on Re{s}= ½ implies that 

MCVN) =  Ω (N
1

2
−ε) since otherwise ζ is zero free on Re{s} = ½.  

We cannot contradict this in PA and using the P or ~P steering wheel we dutifully align  

MPA(N) = Ω (N
1

2
−ε) in the modelling process. Not surprisingly, protracted numerical 

investigation of MPA(N) does not contradict this. The stronger result  

MCV(N) = Ω+
−

 (N
1

2
−ε),  is also provable in CV and is nicely exhibited in extensive numerical 

investigations as we would expect. 

To improve the trivial estimate MPA(N) = Ω(N0) to MCV(N) = Ω (N
1

2
−ε) in the modelling, in one 

fell swoop, is a breathtaking achievement for the mathematics which produced the result not to 

mention the mathematician who found it. ζ appears in every way a very good imaginary friend. 

Yet CV wants to say to PA that all our numerical results are true because we can’t contradict 

them.  

We next discuss why this Ω result is at the end of the usefulness of knowledge of ζ properties 

and we can only get closer and closer approximations to RH by numerical calculation. 

 

A closing argument 

Intuitively, in PA we might view the validity of the P or ~P steering wheel in CV, as a weaker 

argument than the strength of axiomatically controlled inductive arguments in PA and we 

should also keep in mind  the view that CV is derived from PA in the sense of Kronecker’s 

metaphor:- 

“Die ganzen Zahlen hat der liebe Gott gemacht, alles andere ist Menschenwerk” 

(roughly) 

(“God made the natural numbers, all else is the work of man”).  

The rational field PA in this case substitutes for the entity ‘natural numbers’ in the quotation. 

 

The idea of unification through set theory is an approach with marvellous application in the 

external world and we may be comfortable with it having the same status in the internal world 

of prime number theory but it does not prevent us separating finite rational Peano arithmetic 

from the complex variable theory of the ζ function.  

The CV result MCV(N) = Ω(√N) (Titchmarsh [1]) presents a problem for PA. 

Proposition 2  (weak Riemann hypothesis) 

The truth values of the propositions MPA(N) = Ω(√N) and MPA(N) = o(√N) cannot be resolved. 

Proof: 

The result MCV(N) = Ω(√N) is independent of the modelling of primes via ζ theory. 

Indeed, the sketch of the proof in Titchmarsh [1] that MCV(N) = Ω(√N) is true provided RH is 

one of true or false. Then in CV theory the proposition is an unconditional result independent of 
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the truth value of RH.  

However, prior to that understanding we have the result that MPA(N) = Ω(√N) is undecidable 

and this implies that  MPA(N) = o(√N) is also undecidable and independent of ζ modelling.  

 

The independence of these two estimates in CV theory of ζ, clears the way to invoke the 

undecidability that has been established in PA:- it cannot be over-ruled by if and but’s in ζ 

theory. 

We may thus choose the truth values of these two propositions without contradiction in PA in 

the two possible cases:- 

First case:- 

t≡(MPA(N) = Ω(√N))  leaves open either RH true or RH false 

f≡(MPA(N) = o(√N)  leaves open either RH true or RH false 

Second case:- 

t≡(MPA(N) = o(√N)  means computed zeros of ζ on the critical strip lie on Re{s}=1/2 and are 

simple zeros 

f≡(MPA(N) = Ω(√N))  leaves open either RH true or RH false 

None of these four outcomes can be contradicted numerically in PA. 

That most annoying of all questions:- ‘what if there is an offline zero?’, and we only need one, 

has to wait to be asked until we have finished calculating all the simple zeros on Re{s} =1/2. 

 

Notes: 

Arithmetic can turn the tables and argue that whilst RH is not true, it cannot be contradicted in 

computation and this is a most satisfactory reconciliation of the problem in CV. The extensive 

numerical evidence which in a sense, is neither here nor there, is awfully consistent with this 

argument. 

One would expect that the existence of a product formula and a functional equation in each of a 

wider class of zeta functions would produce the same phenomena in terms of numerically 

calculated zeros provided there is a comparable ‘irrational’ sum function like MPA(N) from 

which to gain leverage. 

The discussion here does not in any way disagree with results like that of Riele and Oyyzko or 

any known work in the more exotic theory trying to determine better Ω results for MCV(N) since 

they are independent of the truth of RH in limit type proofs. They are however, results about 

MCV(N) but not MPA(N). The ζ function modelling no  longer has relevance where the exactness 

is required of all zeros of ζ in the critical strip lying on Re{s}=1/2.  

The reader may find interest in (Weyl [1]) for an historical perspective. 

References:- 



23 May 2020 

 

[1] Davenport H.  

The Higher Arithmetic. First Harper Torchbook edition published 1960. (Chapter 1) 

 [1] Insuk K. and Cho M.H.  

On the bound for the absolute value of Möbius function.  Honam Mathematical J. 36 (2014) 

No.2.) 

[1] Ollyzko A.M. & te Riele H.J.J.   

(1985) Disproof of Merten’s Conjecture. Journal für de reine und angewandte Mathematik;357; 

136-160.  

[1] Tenenbaun G. Introduction to analytic and probabilistic number theory. Cambridge studies 

in advanced mathematics: 46. CUP (English edition 1995) Pages 167-168. 

 

[1] Titchmarsh E. C.  The Theory of the Riemann Zeta-function, 2nd edition  

(Revised by D.R. Heath-Brown) Oxford Science Publications. Pages 371-372. 

[1] Weyl. H. Consistency in Mathematics. Mathematical Lectures. Rice Institute May 22-23, 1929. 

Web References (https://www.peterbraun.com.au )    

[1] The Riemann hypothesis is undecidable in rational arithmetic (i) 

[2] The Riemann hypothesis is undecidable in rational arithmetic (ii) 

[3] The Riemann hypothesis is undecidable in rational arithmetic (iii) 

[4] The Riemann hypothesis is undecidable in rational arithmetic (iv) 

[5] Algebra of Numbers (ii). 

 

 

 

 

 

 

 

 

https://www.peterbraun.com.au/

