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Naïve Sieve Theory – by Peter Braun 

          

Introduction: 

Naïve sieve theory is not strictly speaking sieve theory because the immediate goal is 
not about deducing results. It is about supporting the notion of explanation and looking 
at simple conditions on the sieve of Eratosthenes which provide possible ‘causal’ type 
explanations of theorems. In this sense it is different from results type number theory 
and also different from probabilistic number theory. But it is also about searching for 
unprovable statements which may be used as an underlying cause for things we would 
like to prove. In a way this may be viewed as a way out of some of the problem solving 
methods which have tried to deduce answers using manipulation backed by 
extraordinary ideas. These methods do seem to have limits. Chen’s theorem is 
tantalisingly close to the end result for Goldbach’s conjecture but the parity problem 
could be an obstacle which cannot be moved around. In this area of problem it seems 
more  important that 2 is roughly 2 and 3 is roughly 3 and 5 is rouhly 5 etc. This is not at 
all the case with the Riemann hypothesis where we only need a certain density of primes 
and it is not at all important how many of the early ones are left out. Thus we look for 
global statements which provide results and then wonder if there is some way we will 
be able to explain the statements as unprovable. 

The mechanism is simply A (unprovable), A → I (true). 

It is not suggested that the following A’s are unprovable (or even true) but we are 
dealing with I’s which look as if they should be true and it is believed that this approach 
cannot be ruled out as a method of proof. We should look for A’s which are unprovable 
and I’s which are interesting. Ideally, we would have logical equivalence between A and 
I. 

The discussion below provides naïve explanations for some of the well-known questions 
of interest.   

 

Naïve Theorems 

Usage and notation: 

Let B be any set of integers. By a+pB we mean the set {a+pb: bє B}. 

A set of numbers A will be said to be covered by a set of distinct primes P if each element 
of A is divisible by at least one prime in P. 

If pi is the smallest prime dividing n we say pi is a significant multiple of n. 

Let Pn denote the set of the first n prime numbers. 

(a) Let Tn be the maximum number such that Tn consecutive numbers are covered by Pn 

(b) Let Sn be the maximum number such that the sets a1+p1Z, a2+p2Z…       an+pnZ 
combined, include the numbers 1,2, 3…      Sn , where ai  is a residue modulo pi for  1≤ i ≤ 
n, and Z denotes the integers. 

Lemma 

Sn = Tn. 

Proof 

To this end consider a maximal set of consecutive numbers M+1, M+2,  …      M+Tn 
which are covered by Pn. 

For each prime number pi select the smallest ri  ≥ 1 such that  pi │M+ ri  . 

We may assume ri  exists amongst the numbers 1, 2,      Tn  since otherwise pi has not 
been ‘used’ as a covering prime in arriving at the maximal sequence and we easily 
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construct a longer sequence K+1, K+2…    K+Tn, K+Tn+1 in which the first Tn +1  
numbers are covered by Pn~ {pi} and pi │M+ Tn+1 which contradicts the maximal 
choice of Tn. Indeed for j ≠ i select J ≡ M mod pj and J ≡ M+Tn+1 mod pi using the 
Chinese remainder theorem. But then J+1, J+2 …..J+Tn +1 are covered by Pn .  

Then the sets  r1+p1Z, r2+p2Z  …rn+pnZ include the numbers 1,2, 3,    ,Tn. 

It follows that Sn ≥ Tn. 

To get the inequality in the other direction let a1+p1Z, a2+p2Z…      , an+pnZ be a choice 
which produces a maximal sequence 1, 2…   Sn of elements in these sets. 

By the Chinese remainder theorem we may choose J ≡ -ai mod pi   1≤ i ≤ n.  

But then J+1, J+2….   J+Sn are covered by Pn which means Tn ≥ Sn . 

It is useful to hold the equivalence of (a) and (b) firmly in mind in considering certain 
problems in arithmetic. 

We know that Tn > p(n+1)-2 for n > 5 so that sieving using M ≡ 0 mod pi  (1≤ i ≤ n) does 
not immediately come across a maximum number of consecutive numbers covered by 
Pn. We need to look at larger numbers to find such a sequence. 

Instead of starting p1 on p1, p2 on p2…pn on pn in the sieve of Eratosthenes we may 
modify the sieve and start pi on ai for some specify choice of residues and immediately 
mark out Tn consecutive numbers using the marking method of the sieve. Indeed, if 
M+1, M+2 …M+Tn is a maximal sequence and M ≡ -ai mod pi 

 (1≤ i ≤ n) we just mark ai and ai + θpi and the maximum number of consecutive 
numbers will be marked. This provides an alternative method of determining the value 
of Tn. 

We note that a maximum run of consecutive integers covered by Pn includes significant 
multiples of each prime p1,p2…pn.  

 

Goldbach’s conjecture (GB) 

We describe here a small extension of the above thinking with an assumption which 
implies GB. The idea is not to wonder whether the assumption is true but just that it 
provides a simple explanation in terms of a cause. 

Consider two standard number lines one below the other. 

On the top line mark out numbers according to the sieve i 
for the prime pi, for p1,p2 …pn.  

On the bottom line choose an arbitrary selection of residues ai modulo pi (1≤ i ≤ n)    to 
start the marking, the only condition being that p1 starts in the same place on the bottom 
line as it does on the top line (i.e. consistent with the sieve of Eratosthenes). 

What we are looking for is the maximum length away from unity before we get a miss on 
both lines, one above the other. Let GBn denote this number. It is easy to see that GBn  is 
well defined.  

Proposition 1 

If GBn < (pn)2  then every even number may be written as the sum of two primes. 

Proof    

It should be obvious that this is a much stronger condition than is necessary to find an 
equivalent statement to GB. Indeed the standard sieve of Eratosthenes is one of the 
‘runs’ which needs to be considered to arrive at the maximum GBn. 

Hence if we apply the sieve of Eratosthenes to the two number lines one below the 
other, using the primes with p1, p2…pT denoting the primes less than or equal to √E, on  

1             2              3             4……..      E-1   E 

2E-1       2E-2        2E-3        2E-4…..    E+1  E 

moving left to right on the top line and right to left on the bottom line avoiding the 
double count on E, we find 2 prime numbers adding up to 2E. 
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(For those who dislike 1 being a prime a minor variation is required). 

As mentioned the idea here is not to be overly interested in the truth of the assumption 
but purely to appreciate a causal explanation in a simple setting. 

If we wish to start from a statement logically equivalent to Goldbach’s theorem we also 
need to take into account the primes less than or equal to √E as these will be marked in 
the sieving process (Eratosthenes). 

A similar assumption also implies unbounded twin primes. This may be framed in a 
number of ways but the original sieve provides a simple example. 

We easily see that m and m+2 co-prime to Pn occurs unboundedly. Let TPn be the 
minimum number such that the set  {ai+piN: 1≤ i ≤ n} necessarily contains two 
numbers m and m+2 which are both co prime to Pn, for every choice of residues 
a1,a2...an. 

Proposition 2 

If TPn < (pn)2 then there are unbounded twin primes. 

Proof 

Since TPn covers all possible starts for marking p1,p2... it includes the sieve of 
Eratosthenes. 

Thus the numbers 1, 2, 3......TPn contain numbers m and m+2 which are not covered by 
the sieving process if we sieve using the primes p1, p2, ...pT where pT ≤ √TPn  < p(T+1). 
Since these numbers are co-prime to p1, p2  ...pT they are necessarily prime. 

 

Dirichlet’s Theorem on primes in arithmetic progressions 

Dirichlet’s celebrated theorem has also been proven more recently by elementary 
methods at the same level of strength as the prime number theorem (Gelfond and Linnik 
[3]). 

We may also find a possible explanation for ‘unbounded primes’ in terms of Tn.  

 

Proposition 3 

Let (a,b) = 1 and suppose Tn +1   < ((pn+1)2 –b)/a for sufficiently large n. 

Then the progression an+ b supports unbounded primes. 

Proof 

For sufficiently large n we assert the sequence  

a+b, a2+b, …..a(Tn+1) + b contains a member co prime to Pn. 

Indeed, if this is not the case then with aai ≡ -b mod pi (1≤ i ≤ n)    we see the set  

{ai+piZ : 1≤ i ≤ n }   contains  Tn+1 consecutive numbers. But Sn = Tn. 

So at least one of a+b, a2+b …. a(Tn+1) + b is co-prime to Pn . 

If it were composite we would have a(Tn+1) + b ≥ (p(n+1) )2   and this is against the 
assumption of the proposition. This result is also implicit in the next propositions.  

The growth rate of Tn  

We note there are (p1-1)(p2-1)…(pn-1) numbers less than Pn which are co prime to Pn 
and these numbers are the ones which finish runs of consecutive numbers covered by 
Pn. The average distance between these numbers is Kn = Pn/(p1-1)(p2-1)…(pn-1). 

Now ln(Pn/(p1-1)(p2-1)…(pn-1))  = ∑ln(1-(1/pi)) = ln(ln(x) +A-1  + O(1/lnx) as x → ∞ 

using Merten’s theorem (Chanderesakharan [2]. 

Consequently, Kn = eAlnx + O(1) as x → ∞. There are many solutions to m, m+2 

 co-prime to Pn so the downward variation on this estimate is known. There is however 
no useful upper bound widely known if known at all. 
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The growth rate of Tn as n→∞ 

If we start sieving according to Eratosthenes we find pn+1 – 2 consecutive numbers 
covered by Pn. How much better can we do by starting our ‘sieving’ at different start 
points?  

Tn = ∂(n) pn  where ∂(n) = O(nε) as n→∞   is probably the very best we could ever hope 
for but consequences of this assumption indicate how difficult this might be to prove by 
elementary methods. 

In which case GBn = ∂(n) (pn)2  where ∂(n) = O(nε) as n→∞   may be enough to prove 
the Goldbach conjecture but not using the simple discussion earlier. 

In Braun [1], the approach was taken to see what sort of results followed from 
assumptions about Tn and these results represent refined arithmetic which resulted 
from joint work with A. Zulauf..  

The theorems are stated here without proof.  

The results cover 3 topics 

1. The least prime in an arithmetic progression 

2. The unbounded number of primes in a progression 

3. The distance between consecutive prime numbers. 

Let J(x) be the maximum number of consecutive numbers each of which is covered by 
primes less than or equal to x. 

 

Proposition 4 

Let J(x) ≤ Ax2-α 

The least prime Dm+l satisfies Dm+l  ≤ (A+1)2/αD 2/α    ((D,l) = 1, 0< α ≤ 1). 

Proposition 5 

Let J(x) ≤ Ax2β/ β+1. 

There is a prime Dm + l with N ≤  m ≤  [(A+1) β D βN]   (N ≥ 1,  β ≥ 1 (D,l) = 1). 

Proposition 6 

Let J(x) ≤ Ax1+2γ      ( ½ > γ ≥ 0, A > 0). 

For n > N0 there is a prime in [[N-AN(1/2)+γ ],    N]    

pn+1 – pn  = O ((pn)   (½+γ)) as n →∞.  

 

 

Notes (added July 2019):-  

 

Intuitively, since all the primes cover all the natural numbers it would be very odd  

if asymptotically we did not have γ=0 or γ=0+ε. i.e. if this is not the case then the 
primes cover all the natural numbers plus a positive proportion more. In this is the case 
we do get some rather familiar targets. It would also be remarkable if γ=0+ε were 
decidable in rational arithmetic although an upper bound for γ would seem quite 
possible. 
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