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A further note on the Riemann hypothesis (ii) – Peter Braun 

 

Abstract: 

For 1> σ ≥ ½ let RH(α) denote the theorem: ζ(s) is non-zero for σ > α; We call RH(α) the quasi 
Riemann hypothesis. 

An assumption in this discussion is that the axioms for arithmetic allow the construction of 
complex analysis with the complex numbers as a simple field extension of the real numbers. The 
axiom of infinity allows unbounded sets of theorems to be considered, but proof of unbounded 
collections must relate back to finiteness and must involve some inductive mechanism. The 
quasi Riemann hypothesis is seen as undecidable in ½ ≤ σ < 1 because two inductive 
mechanisms move in conflicting directions and an unbounded hierarchical string of theorems 
follows from the assumption of the quasi Riemann hypothesis for any  
α: 1 > α ≥ 1/2.  RH may be interpreted as the weakest theorem in this context, which implies 
unbounded numerical verification that the zeros lie on σ = ½ and are simple.  

 

Notation and usage 

Wherever є appears in text it is assumed to be any arbitrary real positive number greater than 
zero. 

If F is a real valued function defined for positive real numbers then F(X) = Ω+ -(Xa) as X → ∞ 
means the existence of positive numbers a, b and increasing sequences of  positive natural 
numbers {xi}, {yi} where lim xi = limy yi = ∞ as x→ ∞ for which F(xi) > axia  and F(yi) <  -byia  for 
i = 1,2,3 …. 

The results in this discussion assume  basic analytical techniques in the theory of the Riemann 
zeta function Titchmarsh [1], [2]. 

 

Section 1 

Introduction 

In earlier explanations, Braun [1], [2], [3], a principle was discussed which describes the 
negation of finite proof. The principle was coined ‘the ‘finite proof, finite theorem assertion’ 
(FPFTA) and the simplest form is that  

‘A theorem which admits a finite proof will only every generate a finite number of essentially 
distinct theorems’ 

Mathematicians are not averse to thinking in pictures or using imagery to help understand what 
is being talked about. Some props which may help to visualise FPFTA are listed below: 

 As an accounting or counting exercise; we cannot get more out of a theorem than the 
quantities which define the theorem (and these are finite and bounded). We may see this 
as an application of Newton’s third law 

 As a balloon containing a bounded number of seeds (the theorem); once the balloon is 
burst (the theorem proved) there are only a bounded number of seeds (theorems) to 
work with (if we want to start relating fallen seeds to other things on the ground we are 
moving away from the theorem into outside linkage). 
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 A finite argument only contains a finite number of different components which need 
relating in some way. If we identify a theorem with its proof, since the proof will only 
generate a bounded number of logically different theorems (allowing for inductive 
collapsing), so too will the original theorem 

This method of discourse needs to be capped as language is strong enough without restraint to 
form unhelpful images. 

 

The reader is invited at this point to avoid prematurely looking for a counter example or to dis-
entangle the sentence to uncover a tautology or self- fulfilling prophesy or some such thing. 
Further explanation should provide context. 

The devil is in what is meant by essentially distinct theorems. We discuss theorems which 
assume in some way the axiom of infinity. That is, somewhere in the theorem, an analysis will 
uncover the assumption that the pattern [1], [1+1], [1+1+1], [1+1+1+1] ...  may be continued 
indefinitely. This is not a theorem to prove but is an axiom to be accepted as true. This axiom 
does seem like a reasonable assumption, but we are excluding the existence of some reason why 
this acceptance may be questioned. The distinction is between finite mathematics (FM) and 
mathematics in which this assumption of unboundedness is clearly present, and we call the non- 
finite mathematics ‘unbounded mathematics, (UM). In this discussion it is not important to 
obtain definitions for FM and UM which are mutually distinct classes. In fact the basic idea of 
proof of theorems in UM is the mechanism: 
(f Є UM) + proof → (f Є FM). The idea is that with  f Є FM we have an unbounded collection of 
elements or theorems  {p(1), p(2), p(3) ...      } and an unbounded number of different things to 
check in the collection before we are able to announce something or other as true. A finite proof 
consists of finding enough patterns, in the theorems in the set, to reduce the verification to a 
finite exercise. This allows a process of applying the rules and assumptions and getting to a point 
(finitely) where there is nothing left to prove. FPFTA is about the distinction between sets of 
theorems for which this is possible and sets of theorems for which it is not possible. 
Unprovability is about proving something is not there – a proof -  and this is going to be a 
different sort of proof. 

In terms of ‘global’ equations we may express the other side of (f Є UM) + proof → (f Є FM), 
using the comparisons [(f Є UM) + (bounded pattern) → proof] and 
 [(f Є UM) + (unbounded hierarchy) → unprovability]. The application of FPFTA to an 
unprovability proof needs to demonstrate sufficient unbounded hierarchy to get a proof. We 
look at some examples before moving to RH.  
 
Section 2: Examples 

1.Let q(N) denote the sum of the first N natural numbers. Let p(N) denote the theorem 

 q(N) =(1/2)N(N+1). The collection {p(1), p(2)....} is then a true theorem. 

Note we move away from calling q(1)^q(2)^q(3) ....’ the theorem’ because this collection of 
hieroglyphics does not have a meaning and if we are thinking in terms of a logical connective 
‘and’ which only has sensibility in the finite case, to attach a meaning to lim(q(1) ^q(2)^q(3) 
....^q(n)) as n→∞, retaining some meaning for ‘and’,  just leads to difficulties. Classical logic is 
about finite argument and there is little point in trying to get an extension to the unbounded 
case as we cannot observe the unbounded case. We may only verify the unbounded case if there 
are inductive mechanisms which reduce the verification to a finite number of cases. The axiom of 
infinity is about unbounded pattern rather than ‘infinite logic’. We see for example convergent 
series have finite meaning through finite logic. We need to keep the logic and constructions of 
number theory clearly unbundled to avoid confusion. In constructions through to the complex 
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numbers there is no extra quantity of entities created in the sets beyond the initial assumption 
of unbounded in the axiom of infinity. The hierarchy of different sized infinite sets is theory 
derived in set theory about sets. It does not create any extra logic. The classical logic we use to 
develop classical complex analysis uses a notion of availability of entities ‘for any chosen є > 0’ 
rather than imagining all the members of an unbounded set which is never going to be possible 
in a finite universe. We just need to know there will not be an exception to ‘for any chosen є > 0’. 

The use of tidy logical notation involving the universal quantifier does not add any additional 
legitimacy to the theorem and would seem to have more to do with potty training than anything 
– a style of presenting argument. In other words saying ‘for all’ does not get beyond the finite in 
terms of what is verifiable but merely acknowledges the acceptance of unbounded pattern. 

2. A more intricate example was suggested by King [1] offering a ‘devil’s advocate’ consideration 
concerning FPFTA. Namely, the Wiles proof of Fermat’s last theorem (FLT) which we assume to 
be proven in the conventional mathematical sense. The considerations of this example and the 
next, highlighted the need to clarify the explanation of FPFTA to bring it up to a workable 
principle. Let p(n) be the statement that Xn + Yn = Zn does not have non-trivial solutions. FLT is 
essentially the assertion that the unbounded collection of theorems {p(3), p(4) .....} are all true. 
On the face of it, we may think we are looking at a candidate theorem for FPFTA. In the pre-proof 
days, the known relationships between theorems in the collection were fragmented and 
although the problem was reduced to such things as n prime and a non-regular prime, the 
pattern required for finite proof was missing. The location of sufficient pattern to provide 
reduction to a finite proof provided a basis for the proof to be accepted. This necessarily 
involved inductive mechanisms, albeit very complicated, which found commonality in the 
theorems in the set. 

3. This example involves the Riemann zeta function and led to a clarification of FPFTA and an 
extension.   

Let M1(X) = ∑μ(n)  (1 ≤  n ≤ X) where μ is the Möbius function and let Mk(X) =∑M(k-1)(n) 
(1 ≤  n ≤ X), k > 1.  

A proof that Mk(X) = Ω+-(Xk-(1/2)-є) as X→∞ assuming RH is easily seen using well known ideas 
which were used in Braun [1] to regularise fragmented results about oscillatory behaviour of 
certain number theoretic functions. The methods are more easily accessible in Braun [2]. The 
pivotal result used is the classical result that if the integer coefficients of a Dirichlet series are 
eventually of one sign, the function defined by the series, has a singularity at the real point on its 
line of convergence Titchmarsh [2]. If we let p(k) denote the theorem  Mk(X) = Ω+-(Xk-(1/2)-є) as 
X→∞ then the set {p(1), p(2)....} is a true theorem assuming RH. The theorems are logically 
different in the sense that more is being asked of Mk(X) in the amplitude of the sign oscillation 
than for Mk-1 (X) (we easily construct examples where Ak-1 (X) has this oscillatory property but, 
through a dampening in the averaging, Ak(X) does not have the corresponding level of 
oscillation. We have generated an unbounded number of logically connected but different 
theorems. How then is this different from the second example of the Wiles proof of Fermat’s last 
theorem (WFLT)? 

With WFLT there is no suggestion that there is a algebraic logical hierarchy in the theorems 
p(3), p(4)….We don’t have any general scheme. For example if we had p(n) true → p(n+1) true, 
but not the reverse implication we could create a strength hierarchy and start thinking about 
FPFTA. A more profound explanation links the theorems p(3), p(4)… through Wiles 
theorem/proof. Here, there is no FPFTA for Fermat’s last theorem because there is a common 
inductive mechanism which puts all the p(n) on an equivalent logical plane. 

Returning to the FPFTA of RH, consider the problems in arithmetic of proving an Ω+- theorem for 
the Möbius sum function. Clearly, in the conventional weighting of things in number theory, 
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proving M1(X) = Ω+-(Xa) as X→ ∞ is a stronger result than proving M1(X) = Ω+-(Xb) if a > b. In 
this sense RH is the weakest possible result. On the other hand (assuming we know there exists  
line σ = σ (σ < 1) such that RH(σ) is true) , and we focus on proving RH(a) or RH(b) true, then 
proving RH(a) true is a weaker result than proving RH(b) with a> b > σ. 

Each result p(1),p(2), ...  is asking for an additional  Möbius function property in terms of logical 
hierarchy and using  FPFTA the solution set is unprovable. Although this is sufficient for the 
author to conclude the unprovability of RH, the essential testing process described in van der 
Poorten [1] has produced an extension to FPFTA which we label FPFTA(R), where R denotes to 
continuum. We add further strength to the argument. 

 

Section 3 

A continuum of undecidables 

For convenience we let FPFTA(1/2) denote the theorem in the preceding section. 

The techniques in Braun [1], [2] may be used to prove that   Mk(X) = Ω+-(Xk-(1-α)-є) as X→∞ for k 
≥1, follows from RH(α). We thus have a continuum of unbounded theorem sets of the FPFTA 
form ( FPFTA(α) follows from RH(α)).  

The same curious reversal of theorem strength as discussed in section 2, occurs here if we 
assume the value of α is decidable in [1/2, 1).  
Suppose the value of α is a decidable theorem and the value of α is θ with θ< 1.Then moving to 
decreasing numbers σ less than 1 towards θ, we find RH(σ) is a theorem increasing in strength 
but FPFTA(σ) is a theorem in Peano arithmetic of decreasing strength. We conclude that this 
contradictory state disallows RH(θ)  as a decidable theorem. We note RH(1), which we have not 
considered, may be thought the strongest possible provable theorem. ζ(s) would then have zeros 
arbitrarily close to σ = 1. But then FPFTA(α) for any 1> α ≥  ½ generates the required FPFTA. 

We have noted in Braun [3] that unprovability means all non-trivial the zeros of ζ(s) through 
computation will lie on σ = ½ and are simple zeros.  
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