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 Note the algebraic identity 
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Point-wise, for σ > 0, 

lim
N→∞

{∑
(−1)n+1

ns

N

n=1

 }2 = {1 −
2

2s
}2ζ2(s),   

Also, for σ>1/2, 
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 Using the well-known theorem on Dirichlet series half planes of convergence, since for σ >0 
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we have 
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On the other if ζ had a zero in σ>1/2, s=1-Δ+itΔ say, we may raise the possibility that 
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The assumption of a zero provides possible conditions for convergence in that the inner sum tends 

to zero as n→∞. 

We may express this as  

Conjecture: 
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Corollary to conjecture: 

RH. 

Notes 

If we consider any one of the uncountable number of Dirichlet series of the form  

Lδ(s) = ∑
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, where δ(n) ∈ {−1,1} we have 
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which shows  up ζ as the common ‘residue’ of an uncountable number of processes. 

The prime decomposition of all the analytic numbers in order is also an uncountable feat for 

arithmetic. 

 

 

 

 


