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The Riemann hypothesis is undecidable in arithmetic (ii) 

 by 

 Dr Peter Braun 

Abstract: 

The fundamental realisation mentioned in Braun [3] it that the Möbius function values generate the 

prime number counting function values in arithmetic. In the limit the prime number function 

generates the natural logarithm values on natural numbers. The limit Möbius function values thus 

generate the natural logarithm values on natural numbers. 

The purpose of this discussion is to explain how the natural logarithm function (ln) is a key to 

understanding the Riemann hypothesis in arithmetic. Without the logarithm function we cannot say 

much about prime distribution and this leads to a proof that RH is undecidable in arithmetic. In 

contradiction to this, an offline zero of zeta in the critical strip could in principle be calculated in 

arithmetic.  

 

Section 1 

Definitions, conventions 

Let 

[x] =  ∑ 1
n≤x

n natural
 number

 ,   π(x) = ∑ 1
p ≤ x

p prime

 ,         M(x) = ∑ μ(n),     g(x) = ∑
μ(n)

n
n≤x

   (μ = Möbius function),

n≤x

 

S(x) = ∑ λ(n),     h(x) = ∑
λ(n)

n
n≤x

   (λ = Liouville′s function)

n≤x

 and l(x) = ∑
1

n
n≤x

  . 

Let p, q be coprime natural numbers with p≤q. 

A(x) = O (x
p
q) as x → ∞ and ∑ a(n)

n≤x
p
q

= O (x
p
q)  as x → ∞ have definitions within  arithmetic. 

Indeed, we do not need to recognise constructions in which the existence of xp/q is established as 

we substitute the largest number k(x) such that k(x)p ≤ xq in arithmetic calculations.  

 

If Δ=lub{σ: A(x)=O(xσ) as x→∞, we call Δ the order of A(x) and write A(x)=|O(xΔ) as x→∞. 

Introduction 

Existing prime number theory involving prime structure in natural numbers provides a wealth of 

indication of how little is achievable in distribution questions without using the natural logarithm 

and the realm of real/complex analysis.  
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For example, let A(n), B(n) take positive increasing integer values as n =1,2 3…. ,  with positive 

non-zero order less than unity:- 

We appear to have a ‘critical gap’ in rational arithmetic, for example, proving that 

(i)  ∃ A(n) such that there exists a prime between n and n+A(n) for each natural number n, or 
(ii) ∃ B(n) such that M(n) = Ω+

−
(B(n)) as n → ∞. 

For A(n) the weakest case is an order less than unity and for B(n) the weakest case is an order 

greater than zero. 

In complex analysis we know the order of such a B(n) is actually greater than or equal to ½ and 

(more or less) the order of such an A(x) is less than or equal to ½. 

Without the logarithm the ordering of the natural numbers using their prime structure becomes a 

task of ever increasing difficulty. We need to discuss the exact value of primes in some theoretical 

way to understand the order of prime products and it is the natural logarithm which provides exact 

values which can be translated into the exact prime values. These logarithm values are not values in 

rational arithmetic (Hardy and Wright [1]). 

In fact, theoretical ordering of the natural numbers via their prime structure is impossible in 

rational arithmetic. Indeed, allowing a bit of hand waving – to know the ordering of the numbers via 

their prime structure is to know ln(n) for each n and this puts us outside of rational arithmetic and 

the arithmetic primes. We tighten this argument up in the course of this discussion. 

The principle aim of the discourse however is to show that the true propositions  

lim
x→∞

g(x) = 0 and lim
x→∞

M(x)

x
= 0, necessarily require a domain beyond rational arithmetic   

for proof. 

It then follows quite quickly that RH cannot be contradicted in numerical analysis by calculating 

stepwise the zeros of ζ in the critical strip. 

 

Section 1 

Preliminaries 

By rational arithmetic we mean arithmetic based on the standard construction of the rational 

numbers. A rule on the arguments in proofs in this domain is they do not reference the exact values 

of irrational numbers or numbers whose rational status is unprovable in rational arithmetic, either 

implicitly or explicitly. We use UD1 (universe of discourse) to denote this argument realm. We use 

UD2 to denote arguments which include UD1 and the standard constructions for the real and 

complex numbers. As axiomatic systems, UD2 requires more assumptions than UD1 and the two 

may be held at arms length from each other or UD2 may be seen as a sensible extension of UD1 

given certain restrictions.  

In numerical work using prescribed series which are essentially based on inductive definition the 

two systems are consistent in that no numerical contradictions arise. For convenience we call this 

type of activity ‘concrete theory’. 
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There is a reversal in terms of imagery in considering the relationship between UD1 and UD2 with 

regard to logic and mathematical output:-  

UD1⊂UD2 (mathematical output) and UD2⊂UD1 (logic). 

Simply put, UD2 has more concepts, constructions and so on and with more words there is more to 

write about and think about in terms of old and new problem solving. 

On the other hand UD2 is born from arithmetic using additional logical assumptions and the status 

of proof in arithmetic and extensions of arithmetic where numerical results are involved depend on 

having interpretation of the proof in UD1. 

If we restrict UD2 to concrete theory we have UD1=UD2 because we have the inductive link of 

series approximation which allows numerical arithmetic interpretation. 

An important point is that with this restriction we don’t need to reject our knowledge of known 

results in UD2 when we wish to restrict argument to UD1 because we will always have numerical 

(value) interpretation with no possibility of inconsistency – the construction by prescribed 

convergent series ensures this. We repeat that the only difference we insist on is that in UD1 proof 

we do not either implicitly or explicitly acknowledge the precise values of irrational numbers or 

numbers with unknown rational status. UD2 irrational values have approximate value in UD1. 

The simple distinction in this context is between a number and the value of a number.  

e.g. √2 exists in UD2 and its value is exact in UD2 but in translation in UD1 we are only able to 

approximate the value in numerical terms. Number and value have the same meaning for number 

entities in UD1 and meaning is defined inductively. Value is defined via ordering. 

Thus, if we calculate step wise the zeros of ζ in the critical strip, aided by 0-1 type computer output 

and the concrete theory we have an exercise in arithmetic which legitimately interprets 

numerically the UD2 theory. 

If then we establish that RH is unprovable in arithmetic we will not be able to find an offline zero in 

the critical strip through calculation. i.e. all calculated zeros will lie on σ=1/2. Otherwise, the 

numerical evidence would imply an arithmetical calculation disproving RH. 

In this case we may say that RH cannot be contradicted in terms of inductive argument in UD1. 

We call this the weak Riemann hypothesis because there remains at this stage the possibility that a 

proof involving more assumptions than the assumptions of UD1 would be able to argue the limit 

case that all the zeros of zeta in the critical strip lie on σ=1/2. 

 

Section 2 

Dirichlet series in the complex plane 

Throughout this discussion we focus on Dirichlet series which have rational constant coefficients 

on numbers of the same prime structure: 

i.e Dirichlet series which are rearrangements of  
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i. e.  a1 + a2 ∑
1

ps
p

p prime

+a3 ∑
1

(pq)s
p,q

p,q prime
p≠q

+ a4 ∑
1

p2s
p

p prime

+ ⋯  = ∑
ba(n)

ns
n≥1

  , 

with a2 ≠ 0 with σ=1 defining the half plane of convergence of the series. The forms may be 

ordered so that a={ai} is well defined (Braun [2], [3]). 

These criteria covers many Dirichlet series associated with RH type problems, and include many of 

the ones which include the familiar products involving primes and prime powers with constant 

rational coefficients on each prime power.  

We note for series of this sort there is no known proof of a convergent series having a wider half 

plane of convergence than σ=1.  

 

i.e. there is no known UD1 argument that there exist rational coefficients ai  such that 

Ba(N) = ∑ ba(n) has 

n≤N

order less than unity. 

We know from the theory of Dirichlet series (Titchmarsh [1]) that the maximum difference 

between the half plane of absolute convergence and the half plane of convergence is unity for 

general convergent simple Dirichlet series.  

We confirm in the course of the discussion that in UD1 it is not possible to tease out a difference 

between the half plane of absolute convergence and the half plane of convergence for the special 

series under consideration. 

Section 3 

 

Multiplicative functions as coding functions 

 

Multiplicative function values may be thought of as code derived from the multiplicative structure 

of numbers. The Möbius function may be defined by μ(n) = (−1)k  if n is a product of k distinct 

primes and with function value zero otherwise. Thus 

M(x) =  1 − π1(x) + π2(x)−π3(x) + ⋯ …  

where πr(x)   is the count of square free numbers less than or equal to x with exactly r prime 

factors.  

Other definitions for the Möbius and Liouville function are: 

For N ≥ 1, ∑ μ(n)[
N

n
n≤N

] = 1 and ∑ λ(n)[
N

n
n≤N

] = [√N].   

The second formula here uses the largely irrational number √N rounded down to the nearest 

natural number. We do not have a simple arithmetic expression for this number in UD1 but we do 

have an arithmetic interpretation as k(N) where k(N) is the largest number satisfying k(N)2 = N . 
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With this interpretation we see the formula as comprehensible in arithmetic for the inductive 

numbers. However, if we are dealing with limit properties involving λ such as h(∞)=0, we have an 

element of ‘unbounded verification’ which is not inductive and would suggest that h(∞) = 0 is a 

proposition outside of UD1. This is only mentioned here as a possible subject for further thought. 

These last definitions may be recognised as the Dirichlet series partial coefficient sums in both 

sides of  

∑
μ(n)

ns
n≥1

ζ(s) = 1 and ∑
λ(n)

ns
n≥1

ζ(s) = ζ(2s)   

where ζ is Riemann’s zeta function and s is the complex variable s=σ+it. 

Consequently, these two relationships may be seen as special cases of the collection 

∑
ak(n)

ns
ζ(s) =

n≥1

ζ(ks) (k = 1,2,3 … . . ) 

with the Möbius function as the limit relationship as k→∞. 

The comments above about the Liouville function also apply to the arithmetic functions ak in the 

preceding equation and we similarly may question if any one of the equations 

gk(∞) =  ∑
ak(n)

n
n≥1

= 0  

is provable in UD1. 

On the face of it the coding in these arithmetic functions is not giving much information about the 

distribution of prime structure of the natural numbers in arithmetic. Remarkably however the 

ordered values of each of these functions allows a theoretical stepwise ordering of the natural 

numbers by their prime structure as we see in the μ case in section 4. The ordered coding in μ 

values allows the recovery of the order of the natural numbers in terms of their prime structure. 

We see the ordered collection of values of these functions is complicated indeed and arithmetic 

cannot reach the limit collection without implicitly assuming the ordering of the natural numbers 

by their prime structure and this puts the task in UD2. 

Clearly we may sit down with a pencil and paper and start off the chain 

1 < p1 < p2 < p1
2 < p3 < p1p2 < p4 < p1

3 < p2
2 < ⋯          (pi = i th prime ) 

and we are starting to code in the ordering of the prime structures. 

This chain extends in principle indefinitely but the completion of this chain requires unbounded 

information which takes us out of the realm of rational arithmetic into the realm of analysis. 

Indeed, armed with the natural logarithm and the observations  
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2α(np) < pn < 2α(np)+1 and that the sequence {
α(np)

n
} is Cauchy convergent (=

ln(p)

ln(2)
), 

we are able to resolve the ordering of the natural numbers according to prime structure. i.e. 

u1
a1u2

a2 … ur
ar < v1

b1v2
b2 … vs

bs  iff ∑ ai

i≤r

ln(ui) < ∑ bi

i≤s

ln(vi). 

Thus, at a theoretical level with the notion of limit sets in the real field we resolve the ordering of all 

the factorisations of numbers whereas in arithmetic with our pencil and paper we are left labouring 

indefinitely on an unbounded mountain which cannot be climbed.  

 We do not have another logically distinct theoretical way of resolving through theory in arithmetic 

all the decisions 

u1
a1u2

a2 … ur
ar < v1

b1v2
b2 … vs

bs , u1
a1u2

a2 … ur
ar > v1

b1v2
b2 … vs

bs , u1
a1u2

a2 … ur
ar = v1

b1v2
b2 … vs

bs  .  

We know the values of the natural logarithm are irrational and so in theory expressions resolution 

of the ordering of natural by their prime structure puts us necessarily in UD2. 

Yet the natural logarithm is still quite a blunt instrument in this context. 

Indeed, we know from the painstaking work of the elementary methods in number theory and the 

above observation that to get a non trivial estimate for M(x) we need to inject something about 

prime structure into the argument. The work in elementary methods proving the prime number 

theorem in the form M(x)=o(x) as x→∞ makes extensive use of the natural logarithm, providing   

|M(x)| ln(x) ≤ ∑ |M (
x

n
)|

n≤x

+  O(xln(ln(x))    as x → ∞, and this implies the required result. 

See for example Gelfond and Linnik [1]. 

Human ingenuity manages to eek out the theorem M(x)=o(x) as x→∞ using this equation. We 

reiterate though that this is a proof in UD2 as the logarithm is persona non grata in UD1.  

Section  4 

Mixing up arithmetic and analysis 

We have asserted above that the ordered μ values allow recovery of the ordered natural numbers in 

terms of their prime structure. The relevance of this is that it puts the task of proving limit 

properties in the convergences of certain conditionally convergent series and some asymptotic 

estimates outside of the rational domain.  

The overall structure from hereon is to discuss a meaning for the logical chain 

{𝛍(𝐧): 𝐧 ≥ 𝟏} → {𝛑(𝐧): 𝐧 ≥ 𝟏} → {𝐥𝐧(𝐧) : 𝐧 ≥ 𝟏} 

and then extend it to explain  

{𝛍(𝐧): 𝐧 ≥ 𝟏} → {𝛑(𝐧): 𝐧 ≥ 𝟏} → {𝐥𝐧(𝐧) : 𝐧 ≥ 𝟏} → 𝐑𝐇 𝐮𝐧𝐩𝐫𝐨𝐯𝐚𝐛𝐥𝐞 𝐢𝐧 𝐔𝐃𝟏. 
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Before proceeding to the main argument we draw a distinction between purely arithmetic functions 

and those which also appear in analytical work.  

With the clear separation between arithmetic (UD1) and analysis (UD2) ([1]) we may make a 

distinction between arithmetic (UD1) numbers, primes, number functions and so on  and the 

corresponding analytic (UD2) entities. Where no limit properties are involved and collections are 

finite the relevant corresponding entities will coincide.  

The arithmetic primes are defined inductively in the broad sense and this is implicit in the 

argument that the prime number sequence is unbounded. The unique factorisation of finite 

numbers into prime factors is also provable by mathematical induction in UD1 (Davenport [1]).  

The analytic primes are defined by a function not connected in an exact numerical way to 

arithmetic by 

ζ(s) = ∑
1

ns
= ∏ (1 −

1

ps
)−1

p primen≥1

 = ∏(1 −
1

pn
s )−1

n≥1

 (σ > 1), where the primes 

p1, p2, p3, … . are in ascending order. Indeed, as we have noted, the act of ordering all the prime 

products to provide the definition for ζ(s) implies defining  ln(n) for each number n and this is not 

possible in UD1 which only has rational values in that axiomatic number system.  

Transition between the precise UD2 values ns = exp(sln(n))  and interpretation in UD1 is   

via series approximation (appendix 1). 

 

With such prescribed entities we have interpretation to any nominated degree of accuracy in UD1. 

Interestingly, we note in passing that the relationship between ζ and the analytic prime numbers 

contains little direct information about analytic prime numbers. 

Indeed, to establish that 

ζ(s) = ∏ (1 −
1

ps
)−1 for σ > 1

p prime

 

we only need (assuming uniqueness of factorisation) 

lim
n→∞

{
1

Nσ
+

1

(N + 1)σ
+ ⋯ }  = 0, (Titchmarsh [2] page 1&2), 

and this convergence requirement is quite weak. 

Indeed, in UD2 for σ>1, with help from the ancients 

1 + (
1

2σ
+

1

3σ
) + (

1

4σ
+

1

5σ
+

1

6σ
+

1

7σ
) +  (

1

8σ
+

1

9σ
+

1

10σ
+

1

11σ
+

1

12σ
+

1

13σ
+

1

14σ
+

1

15σ
) + ⋯ 

< 1 +
1

2σ−1
+ (

1

2σ−1
)2 + +(

1

2σ−1
)3+..   =    

2σ−1

2σ−1 − 1
 . 

So for N=1,2,3 ……. we may get a suitable estimate  
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| ∑
1

ns
1≤n≤N

− ∏ (1 −
1

ps
p<𝑁

p prime

)−1 | 

via the uniqueness of factorisation of prime numbers and this is clearly an inductive argument. 

We cannot carry this inductive argument to the limit case for primes in rational arithmetic as we 

will see the ordering of all the prime structures assumes a domain of knowledge which includes the 

natural logarithm. 

However, we are able to justify the ‘analytic prime’ interpretation of the original equation and we 

will not find numerical inconsistency between purely arithmetic endeavours and numerical analytic 

results. 

Continuing with the arithmetic/analytic distinction, the arithmetic Möbius function μ1 may be 

defined stepwise by 

μ1(1) = 1, for N > 1, if ∑ μ1(n)

n≤N−1

[
N

n
] = 0 then μ1(N) = 1, else if  

∑ μ1(n)

n≤N−1

[
N

n
] = 1 then μ1(N) =  0, else μ1(N) = −1; 

 

and the analytic Möbius function, μ2 is defined by 

∑
μ2(n)

ns
n≥1

ζ(s) = 1 (σ > 1). 

For inductive numbers n we have μ1(n) = μ2(n) and that is the extent of the relationship in UD1. 

This relationship is somewhat like the limited capacity of rational arithmetic to describe irrational 

numbers. We may also view the analytic μ as a continuation of the arithmetic μ. 

There is a very straight forward way of understanding the arithmetic/analytic distinction from the 

history of elementary number theory. If we count the number of numbers k with 1≤k≤N divisible 

by a prime number we have the relationship 

N − 1 = ∑ [
N

p
p≤N

p prime

] − ∑ [
N

pq
p,q≤N

p,q prime

p,q distinct
 

] + ∑ [
N

pqr
p,q,r≤N

p,q,r prime

p,q,r distinct
 

] − ⋯    

where distinct prime structure is included exactly once in the denominators. This counting does 

assume that numbers have an essentially unique factorisation in terms of prime numbers. 

Thus, all that the equations  

∑ μ(n)[
N

n
n≤N

] = 1, (N = 1,2,3 … . . ) 
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are saying, assuming uniqueness of factorisation, is that every number greater than unity is 

divisible by a prime. It is thus not surprising that if we solve this system of equations for M(N) in 

UD1 we end up with M(N)=M(N) (see Braun [4] Appendix 1). Yet we see shortly the limit collection 

of equations contains enough information to derive the prime structure of the natural numbers and 

this puts us outside rational arithmetic. 

 

Section 4  

We now move to the drivers of  RH unprovability in rational arithmetic. 

The important logical chain is  

{𝛍(𝐧): 𝐧 ≥ 𝟏} → {𝛑(𝐧): 𝐧 ≥ 𝟏} → {𝐥𝐧(𝐧) : 𝐧 ≥ 𝟏} , 

where the first implication (left to right) uses  the arithmetic values in UD1 and the overall 

collection is on the ‘limit’ sets in UD2.  

The essential idea is that limit type questions involving the μ values in a non trivial way necessarily 

require UD2 for resolution because the ordered values of μ lie behind the irrational logarithm 

values and are thus beyond mathematical inductive pattern. We cannot resolve questions which 

have unbounded distinct pattern by inductive argument in arithmetic. 

For σ=Re{s}>1 

ln(ζ(s)) = ∑
1

k
k≥1

p(ks)  where p(ks) = ∑
1

pks 
p prime

    

and 

ζ(s) = exp (ln(ζ(s)) = exp (∑
1

k
k≥1

p(ks))  =   ∏ exp (

k≥1

 
1

k
p(ks))   

We expand the RHS using the power series expansion for exp and group terms of the form 

pa1(b1s)pa2(b2s) … . . par(brs) where ∑ aibi = K (constant) for K = 1,2, … .   and r ≥ 1  . 

The expansion starts 

ζ(s) = 1 + p(s) + {
1

2
p2(s) +

1

2
p(2s)} + {

1

6
p3(s) +

1

2
p(s)p(2s) +

1

3
p(3s)} + 

                                + {
1

24
p4(s) +

1

4
p2(s)p(2s) +

1

3
p(s)p(3s) +

1

8
p2(2s) +

1

4
p(4s)} + ⋯  … (1). 

We note in passing that in this grouping  

the isolated coefficient of pa(bs) =
1

a! ba
. 
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The coefficients of other composite products are formed multiplicatively from these values. 

We rearrange (1) as  

p(s) = ζ(s) − 1 − {
1

2
p2(s) +

1

2
p(2s)} − {

1

6
p3(s) +

1

2
p(s)p(2s) +

1

3
p(3s)} + 

                               − {
1

24
p4(s) +

1

4
p2(s)p(2s) +

1

3
p(s)p(3s) +

1

8
p2(2s) +

1

4
p(4s)} − ⋯  … (2). 

Equations (1) and (2) are sums and products of Dirichlet series and the equations may be 

expressed in terms of partial coefficient sums of such series (See appendix 1). 

We may write out equation (2) in terms of the prime number counting function:  

P1(x) = [x] − 1 − {
1

2
∑ P2

p≥2
p prime

(x) +
1

2
P1(x

1
2)} − {

1

6
P3(x) +

1

2
∑ P1(

x

p2
p ≥2

p prime

) +
1

3
P1 (x

1
3)} + 

−{
1

24
P4(x) +

1

4
∑ P2(

x

p2
p ≥2

p prime

) +
1

3
∑ P1(

x

p3
p ≥2

p prime

) +
1

8
∑ P1(√

x

p2
p ≥2

p prime

) +
1

4
∑ P1(x

1
4

p ≥2
p prime

)} …   (3) , 

where 

P1(x) = π(x) and Pk(x) = ∑ Pk−1(
x

p
)

p prime

. 

For the first few terms shown above this notation is adequate but for higher terms a more complex 

description is needed for the equation. However much the complexity of terms on the RHS of (3) 

they may be evaluated from prior values of the prime number sum function (see Appendix 2). 

In the specific case (3) involving all the primes, the balancing term [x] produces an all important 

inductive link via [x]→[x]+1which allows the values of prime numbers to be evaluated stepwise. 

The identity yields a capacity to calculate the order and values of primes in arithmetic. 

For example, from (3) with P1(1) = 0, we have P1(2) = 1, P1(3) = 2, P1(4) = 2, and so on. . 

P1(x) not only counts primes in arithmetic, it allows the value of primes to be determined 

inductively in the broad sense (in principle) using just field addition and multiplication – an 

algebraic/arithmetic  alternative to the sieve of Eratosthenes. P1(x) defines itself in (3) in a 

complicated recursive fashion. 

We show that (3) and a corresponding equation involving M(x) leads quickly to an explanation of 

the Riemann hypothesis. 

We show that the π  values and the M values encode the same information in arithmetic and in the 

analytic realm. 

Indeed, corresponding to (1) using a similar argument for the derivation, we have 
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1

ζ(s)
= 1 − p(s) + {

1

2
p2(s) −

1

2
p(2s)} − {

1

6
p3(s) −

1

2
p(s)p(2s) +

1

3
p(3s)} + 

                                + {
1

24
p4(s) −

1

4
p2(s)p(2s) +

1

3
p(s)p(3s) +

1

8
p2(2s) −

1

4
p(4s)} + ⋯  … (4) 

which then yields 

M(x) = 1 − P1(x) + {
1

2
∑ P2

p≥2
p prime

(x) −
1

2
P1(x

1
2)} − {

1

6
P3(x) −

1

2
∑ P1(

x

p2
p ≥2

p prime

) +
1

3
P1 (x

1
3)} + 

+{
1

24
P4(x) −

1

4
∑ P2(

x

p2
p ≥2

p prime

) +
1

3
∑ P1(

x

p3
p ≥2

p prime

) +
1

8
∑ P1(√

x

p2
p ≥2

p prime

) −
1

4
∑ P1(x

1
4

p ≥2
p prime

)} …   (5) . 

We noted in [1] that not only is M step-wise determined in arithmetic from P1 using (5) but if we 

rearrange (5) as 

P1(x) = 1 − M(x) + {
1

2
∑ P2

p≥2
p prime

(x) −
1

2
P1(x

1
2)} − {

1

6
P3(x) −

1

2
∑ P1(

x

p2
p ≥2

p prime

) +
1

3
P1 (x

1
3)} + 

+{
1

24
P4(x) −

1

4
∑ P2(

x

p2
p ≥2

p prime

) +
1

3
∑ P1(

x

p3
p ≥2

p prime

) +
1

8
∑ P1(√

x

p2
p ≥2

p prime

) −
1

4
∑ P1(x

1
4

p ≥2
p prime

)} …   (6) , 

then the values of M(x) may be used to calculate the values of the prime number counting function 

in a step-wise fashion. 

Clearly, this is not a sensible way of calculating things but the theoretical significance is far 

reaching.  

We note that the same conclusions may be reached with a focus on ln(ζ(s)) rather than p(s) which 

makes the expressions for the partial coefficient sums more straightforward but we would not be 

dealing quite so directly with π(x).  

Section 5 

Separating rational arithmetic and analytic arithmetic 

A number theorist restricting themself to rational arithmetic is undeniably allowed to think about 

how big M(x) gets from time to time or how small g(x) gets considering large values of x and these 

considerations can be tightened into what most would agree look like arithmetic propositions.  If 

we look more closely at the evolution of why we would ask such questions we realise we are 

borrowing the limit concept from the development of the real and complex number systems.  

We do have some examples of convergence in arithmetic. For example 

1 +
1

2
+

1

4
+

1

8
+ ⋯ = 2. 
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This example belongs to the family of power series with rational coefficients which reduce to a ratio 

of two polynomials each with rational coefficients. i.e. there is an inductive pattern in the 

coefficients which reduces the series to the ratio of a couple of   finite series which are rational for 

rational argument (singularities excluded).  

We need to understand that from an arithmetic point of view if we contemplate (for example) 

∑
μ(n)

n
n≥1

= 0   (g(∞) = 0). 

there is no reduction or any kind upon which to latch an inductive argument in arithmetic for 

convergence. 

This is not obvious at first, even though intuitively it is more likely than not, but we cannot readily 

discount the logical possibility that there is some inductive pattern in the μ values which somehow 

produce a finite proof of the above equation in arithmetic. The exclusion of this type of possibility 

opens up a way to explaining RH. 

 The conditional convergence g(∞)=0 involves  all the ordered prime factorisations of the natural 

numbers to determine the value of μ(n) for each n in order to consider the limit value. It is a 

question involving the analytic primes as discussed in section 2. This puts the inquiry squarely in 

UD2. The framing of the question of convergence immediately puts the inquiry into UD2. i.e. 

questions involving unbounded ordered distinct prime structure are questions about the analytic 

primes and the order of the analytic primes define the logarithm. To contemplate such problems 

resolvable in arithmetic is no more than folly. 

The natural logarithm is the undisputed necessary path needed in order to gain access to non-

trivial structural information involving the order of prime products. The logarithm is the can 

opener which opens up the multiplicative structure of the multiplicative natural number can.  

It allows a small peep hole through which to access order of prime structure in a theoretical way.  

We have shown that the arithmetic μ values imply the π values and vice versa in arithmetic. In the 

limit then either set of values enables the construction of ln(n) for the natural numbers n from 

arithmetic.  

Indeed, as mentioned above, in the rational field we have for each prime p≠q (q fixed prime, q=2 

for example),  

qα(np) < pn < qα(np)+1 and  the sequence {
α(np)

n
} is Cauchy convergent (=

ln(p)

ln(q)
). 

We thus see that since the ordering of the primes and prime powers is sufficient to order the 

natural numbers according to their prime factoring, we have the exact value of n via the coding 

n=exp(ln(n)). In short ‘knowing’ the ordering of all the primes and prime powers takes us to the 

natural logarithm on natural numbers and thus necessarily outside of UD1. 

 

We have seen in Section 4 that the ordered μ values on the natural numbers lie the behind ordering 

of numbers by prime structure and hence in the limit case lie behind the natural logarithm on 

natural numbers. As the logarithm is beyond the reach of arithmetic so too are the ordered values 
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of μ. i.e. as we cannot unlock all the ordered μ values in arithmetic we do not have enough to work 

with in arithmetic to establish g(∞)=0. 

Similarly, M(x)=o(x) as x→∞ is unprovable in arithmetic.  

i. e. lim
x→∞

M(x)

x
 is a question about analytic primes. 

Consequently, the order of M(x) as x→∞ in the range [1/2, 1] is undecidable in UD1. 

we cannot frame the question without being in UD2. 

Yet on the computational side, aided by 0-1 type computer calculations, we remain in rational 

arithmetic in finding that sequential zeros of ζ in the critical strip. An exceptional zero found by 

computation would provide an arithmetic proof that RH was false. It would allow a narrowing of 

the range for the order estimate of M(x) as x→∞.  

Similarly, the proposition M(x)=O(√x) as x→∞  is undecidable in arithmetic. A computed multiple 

zero on σ=1/2 would prove in arithmetic that M(x)≠O(√x) as x→∞ and hence all computed zeros 

will be simple zeros. Ironically, the weakness of rational arithmetic proves to be remarkably strong. 

Appendix 1 

We have noted in various discussions that the connection of ζ(s) to arithmetic in terms of known 

exact numerical values is very limited if not non-existent and in numerical work interpretation in 

UD1 is thus through numerical approximation. 

Common prescribed functions in the theory which assist in the numerical interpretation are listed 

below:- 

exp(s) = 1 +
s

1!
+

s2

2!
+ ⋯ 

cos(s) = 1 −
s2

2!
+

s4

4!
− ⋯ 

sin(s) = s −
s3

3!
+

s5

5!
− ⋯   

ln(n) = (1 −
1

n
) +

1

2
(1 −

1

n
)

2

+ ⋯   

nσ+it = exp (ln(nσ)) (cos (tln(n) + isin(tln(n)) 

ζ(s) = 1 +
1

2s
+

1

3s
+ ⋯     . 

And for interpretation in σ>0, 

ζ(s) = (1 −
2

2𝑠
)−1(1 −

1

2s
+

1

3s
− ⋯   )  . 
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Appendix 1 

 

Multiplication of Dirichlet series 

Let 

f1(s) = ∑
a1(n)

ns
n≥1

, f2(s) = ∑
a2(n)

ns
n≥1

, … . , fk(s) = ∑
ak(n)

ns
n≥1

, g(s) = ∑
g(n)

ns
n≥1

and h(s) = ∑
h(n)

ns
.

n≥1

 

Let 

A1(x) = ∑ a1(n),

n≤x

 …    Ak(x) = ∑ ak(n),

n≤x

   G(x) = ∑ g(n) and ,

n≤x

   H(x) = ∑ h(n).

n≤x

 

If 

f1(s)f2(s). . fk(s)g(s) = h(s)    

then 

H(x) = ∑ a1(n1)

n1≤x

∑ a2(n2)

n2≤x

… ∑ ak(nk)

nk≤x

G ([
x

n1n2. . nk
]) . 

Clearly, the role of g(s) and any of the fi(s)may be interchanged. 

In the case of pk+1(bs) the coefficient sum up to [x]  (Cosumx(pk+1(bs)) is given by  

Cosumx(pk+1(bs)) = ∑ l(n1)

n1≤x

∑ l(n2)

n2≤x

… ∑ l(nk)

nk≤x

π(([(
x

n1n2. . nk
)

1
b])   

where l(n)=1 if n is prime otherwise l(n)=0. 

The values of composite coefficient sums derived from series with more than one primary 

component pa1(b1s)pa2(b2s) … . . par(brs) are implied via these expressions. 
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