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A special class of number theoretic functions - Peter Braun 

 

 

Let υ(N, p) denote the highest power of p dividing N. 

We write a Є A if a is a number theoretic function constant on forms satisfying 

(1/ υ(N, p) ) {a(N/p) + a(N/p2) +  ….+ a(N/p υ(N, p) ) }   =   F([N])  …….(1) 

for each prime p dividing N. 

We see many of the Dirichlet series which appear in discussions in the theory of the 
Riemann zeta function have coefficients which satisfy these conditions. Indeed the 
Riemann zeta function may be considered the simplest function with coefficients 
satisfying the conditions. 

We note that with F and a satisfying (1) we have the relationship 

∑F(n)log(n)/ns  =  -( ζ’(s)/ ζ(s))∑a(n)/ns         (a(1) = 0). 

The Algebra of number forms includes the ordering of forms [n] for which υ(n) = K (K 
1,2,3…). 

(Note this function is not to be confused with υ(N, p) as defined above) 

We call the collection of forms with υ(n) = K the class of forms with index K. 

It is an interesting property of the functions being studied here that the values on the 
function are determined if the values on one form in each class are specified. 

To get an idea of why this is true we look at a simple numerical development: 

Different letters denote different primes. 

Let n = p2q. Then ½{a(pq) + a(p)} = a(p2). 

With a(p) specified this last equation determines one of a(pq), a(p2) from the other. 

Let n = (p3q) 

Then 1/3{a(p2q) +a(pq) +a(q) } = a(p3) 

Also with n = p2qr we have 

½{a(pqr) + a(qr)} = a(p2q). 

Clearly specifying one of a(pqr), a(p2q) and  a(p3) determines the values of the other 
two. 

We first prove a special case of this observation. 

Let PN denote a product of N distinct primes. 

Theorem 1 

For all a Є A and all forms [n] there exist non negative rational λi[n]  (1≤ i ≤ υ([n]) such 
that a(n) = ∑ λi[n] a(Pi)  where ∑ λi[n] = 1. Each summation is 1≤ i ≤ υ([n]. 
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In the above illustration, we have 

a(p) = 1a(p) 

a(pq) =  0a(p) + 1a(pq) 

 a(p2) =  (1/2)a(p) + (1/2) a(pq) 

a(pqr) =  0a(p) ) +  0a(pq) + 1a(pqr) 

a(p2q) = 0a(p) + (1/2)a(pq) + (1/2)a(pqr)  

a(p3) =  (1/3)a(p) + (1/2)a(pq) +  (1/6)a(pqr) 

a(pqrs)  =  0a(p) ) +  0a(pq) +0a(pqr) + 1a(pqrs) 

a(pqr2)  =  0a(p)+0a(pq) +(1/2)a(pqr) + (1/2)a(pqrs) 

a(p2q2)  =  0a(p) + (1/4)a(pq) + (1/2)a(pqr) + (1/4)a(pqrs) 

a(p4)  =  (1/4)a(p) + (11/24)a(pq) + (1/4)a(pqr) + (1/24)a(pqrs) 

.... 

 

The proof of this continuing pattern will be by induction.  

Let T1 = {[p]}, T2 = {[pq], [p2] }, T3 = {[pqr] , [p2q],[p3]} with TK = {[n] : υ(n) = K}. 

The inductive proof will take the ordering of the classes in each TK into account. 

We firstly establish the existence of such a representation and then prove the 
uniqueness. 

We see the representation is possible for T1 T2 and T3. 

Now assume such a representation is possible for each of the classes in  

T1,  T2, … TN. The smallest element of T(N+1) is the class defined by a product of N+1 
distinct primes and we note 

   a(P(N+1)) = 0a(P1) + 0a(P2) + ….0a(PN) + 1 a(P(N+1)). 

Hence the representation is possible for this element of T(N+1). 

Let [n] be any other element of T(N+1) and assume the theorem is true for [m] <[n]. There 
must be a prime p such that p2 |n and let υ(p,n) = t. Let P be a prime which does not 
divide n. Then 

a(n) =   a(Pn/P)  =  (1/t){ a(Pn/p)+ a(Pn/p2)+ ….+ a(Pn/pt)} ……………….(1). 

We note each of [Pn/p2]  …. [Pn/pt] is less than [n]. 

Now υ([Pn/p]) =   υ([n]) but Pn/p has more primes q to the power 1 than n and hence 
from the way the ordering is defined  [Pn/p] < [n] . 

Thus by the inductive assumption each of a(Pn/p), a(Pn/p2) ,…. a(Pn/pt) has a 
representation of the type given in the statement of the theorem. 

If these representations are substituted into (1) with like terms gathered together we 
necessarily obtain a corresponding representation for a([n]). 

We now show that this representation is unique. 

We use the following:   

Lemma1 

For k ≥ 1  let dk(n) be defined by ∑dk(n)/ns = {ζ(s)}k. Then dk Є A. 

Proof 

For σ > 1 we have 

k{ζ(s)}k-1 ζ’(s) = -∑ dk(n)logn/ns . 

We may write this as  

k{ζ(s)}k{ ζ’(s)/ ζ(s)} = -∑ dk(n)logn/ns . 

Comparing coefficients, using the von Mangoldt function Λ, 

-k∑dk(N/g)Λ(g) = -dk(N) where summation is over the divisors g of N. 
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Since the logarithms of primes are linearly independent over Q the result follows.  

 

The uniqueness 

Suppose now for some [n] > [p] we have two representations a([n]) = ∑λia(Pi)  and  

a([n]) = ∑λ’ia(Pi) for a Є A and these are different where both sums are finite. 

Then    = ∑(λi -   λ’i )  a(Pi)  = 0 has non- zero coefficients . 

If we choose a = dk we note dk(Pi) =  (dk(p))i but then the polynomial equation 

∑(λi -   λ’i ) xi  = 0 has unbounded solutions d1(p), d2(p), …. 

i.e. ∑(λi -   λ’i ) xi  = 0 for x = 1, 2, 3 ....., and this is not possible. 

 

Theorem 2 

Let a(P1), a(P2), …a(PN) ….be assigned complex number values and let a([n]) be assigned 
values according to the coefficients in Theorem 1. Then a Є A.  

Proof 

The uniqueness of coefficients in Theorem 1 essentially implies this. 

No matter how the expressions for the a([n]) are derived there is only one form for the 
final result. 

Thus, since the values of a(P1), a(P2), …a(PN) …. define the function a([n]) for each n, 
every single equation derived from the equations defining  a Є A will  be consistent with 
the uniqueness and since this consistency is the total requirement for a Є A it follows 
that defining values on the a(Pn) is sufficient to construct a function a Є A. 

 

Now with H1 = {[p}}, H2 = {[pq], [p2]}, H3 = {[pqr], [p2q], [p3]}, ….. 

we prove the generalisation of theorem. 

Theorem 3 

Let Q1, Q2, Q3 …QN be selected by choosing  exactly one element from each of H1, H2, H3, 
…HN and a Є A then the values of a([n]) with υ(n) ≤ N may be expressed as unique linear 
combinations of a(Q1), a(Q2), …..a(QN) with rational coefficients where the linear 
combinations are independent of a Є A. Further the sum of the coefficients equals unity. 

Proof 

We easily see the theorem is true for all combinations for n= 1, 2 and 3. 

We assume the same is true for n = 1, 2 …N and examine the case n = N+1. 

We order the elements of H(N+1) as Q1, Q2 ….QN, Q(N+1) using the multiplicative ordering of 
forms. Recall that Q1 is defined by the product of N+1 distinct primes and each other Qr 
is divisible by a p2 in the form definition. 

Suppose for now that the truth of the theorem has been established on Qr for r = 1,2,  K-
1 where K > 2. (The case K = 2 will be proven separately). 

Then let m = PQK where we assume P is co-prime to QK and p2|QK. 

Using the fundamental property of a on m we thus have 

a( QK) = (1/υ(m,p)){a(PQk/p) + a(PQk/p2) + …+ a(PQk/pυ(m,p))}. 

The arguments of the a function on the right hand side define forms which are all 
smaller than QK. The result then follows for QK. 

To complete the inductive proof we need to establish the starting point:- that the 
theorem holds for Q1. 

We only need consider the case where Q1 is the product of N+1 distinct primes. 

Since representation is unique in theorem 1 we may write 

a(Q1) = λ1a(P1) +λ2 a(P2)+ ...+ λ(N+1) a(P(N+1)). 

Then   a(P(N+1)) =  (1/ λ(N+1)){ a(Q1) -  λ1a(P1) +λ2 a(P2)+ ...+ λN a(PN)} 
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and each of a(P1),  a(P2), .... ..a(PN) is expressible using elements from H1,H2,...HN. 

In the manipulation of linear expressions and substituting linear expressions we are 
always using coefficients which sum to unity. It follows that the sum of coefficients in the 
unique representation is unity. 

Although we have many choices for a ‘basis’ to describe an a function and these can be 
ordered in an obvious way, there are only two which admit to easy description. 

Namely a(p1), a(p1p2), a(p1p2p3) ...... and a(p1), a(p2), a(p3).... 

The series 1/ ζ(s) has an a function defined by  a(p1p2...pn) = (-1)n and the series for  ln 
ζ(s) has an a function defined by a(pn) = 1/n. 

 

 

Notes 

H1, H2 and H3 have 1, 2, and 3 elements respectively. However for N>3, HN has more than 
N elements. Thus with T1, T2, ….TM denoting the elements of HN and a(Tr) = cr,1a(P1) 
+cr,2(a(P2) +  ….+ cr,,N  a( PN)     ( 1 ≤ r ≤ M with M>N) we have inter-relationships 
between the a(Tr). 

For example, a little computation reveals 

4a(p2q2) -3a(pq3)-a(pqr2) ≡ 0. 

For the divisor function we have 4.3.3 – 3.2.4 – 2.2.3 = 0 which on cancellation gives  

2.3 – 4 – 2 = 0. It would be interesting to understand the nature of the ‘skeleton’ 
numerical relationships. 

We now extend the result of lemma 1 to integer k. 

It turns out that if a, b Є A and c is defined by normal Dirichlet series multiplication c(n) 
= ∑a(g)b(n/g) with summation over all divisors of n, then c Є A. It does not seem to be 
easy to derive this directly from the definition of a and b but such a proof would 
eliminate the need for the following lemma. 

Lemma 2 

For each natural number i let ci Є A and have the property that for each form [n] there 
exists K[n] such that ci([n]) = 0 for i > K[n]. Let c(n) = ∑ci(n) where summation is 1≤ i ≤ 
K[n]. Then c Є A. 

Proof 

We note the property a, b Є A → a+b Є A where (a+b)(n) = a(n)+b(n). 

The lemma then follows immediately from (1) since for any nominated [n], c([n]) is a 
finite sum of ci([n]). 

Theorem 4 

For eack k ≥ 1 let   ck be defined by (ζ(s)-1)k  = ∑ck(n)/ns. Then ck  Є A.      

Proof 

This follows directly from lemma 1 and lemma 2 using the binomial expansion of  (ζ(s)-
1)k. 

Theorem 5 

Define dk(n) for each integer k by ζ(s)k  = ∑dk(n)/ns. Then dk Є A. 

Proof 

We note the dk  are well defined and this result extends lemma 1. 

For positive k,  1/ζ(s)k  = 1+((ζ(s)-1))-k 

                                        = ∑-kCr(ζ(s)-1)r. 

The result follows using lemma 2. 
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We note with a Є A that the formal Dirichlet  ∑a(n)/ns may not have a half plane of 
convergence. For example if we let Pn = p1p2....pn  be the product of the first n prime 
numbers and let a([Pn]) = exp(Pn), we note a(Pn)/Pnσ prevents  convergence for any σ. 

In the next section we thus consider formal Dirichlet series without concern for a half 
plane of convergence although the criteria for this condition will also be examined. 

Similarly we will consider formal power series where initially we will not be concerned 
with convergence. 

Theorem 6 

Let λn  be defined complex numbers for n ≥ 0 and let f be the formal power series 
defined by f(z) = ∑ λn zn . 

Let ∑a(n)/ns   be the formal rearrangement of f(ζ(s)-1) as a Dirichlet series. 

Then a Є A. 

Proof 

Expanding each term in the power series and using lemma 1 and lemma 2 the result 
follows. 

The converse of this theorem is true and provides an explanation of the underlying 
structure of the a Є A. 

Theorem 7 

Let a Є A. Then there exist λ0,  λ1,  λ2 ... such that with f(z) = λ0+  λ1z+ λ2z2+..., 

f(ζ(s)-1)  rearranged as a Dirichlet series equals ∑a(n)/ns . 

Proof 

We match up coefficients consistently in the identity f(ζ(s)-1) = ∑a(n)/ns . 

Firstly note that the number 1/(p1p2...pn )s only appears in the terms of (ζ(s)-1)n  and 
matching coefficients we require a(p1p2...pn) = λn(n!). 

We use this to define a(p1), a(p1p2),   .... 

Then define a Dirichlet series b(n) by  

∑b(n)/ns  = f(ζ(s)-1) where f(z) = λ0+  λ1z+ λ2z2+... 

We note b Є A. 

Then by the uniqueness in Theorem 1 we necessarily have a(n) = b(n). 

 

We are now in a position to give a simple proof that if a,b Є A and c = a*b is defined by 
Dirichlet series multiplication then c Є A. 

Indeed if ∑a(n)/ns = F(ζ(s)-1) and ∑b(n)/ns = G(ζ(s)-1) then 

∑c(n)/ns = {∑a(n)/ns}{∑b(n)/ns} = F(ζ(s)-1) G(ζ(s)-1) = H(ζ(s)-1). 

The result follows using theorem 5. 

 

The relationship between the Dirichlet series and the power series carries more 
information. 

Theorem 8 

Let f(s) = ∑a(n)/ns =  F(ζ(s)-1) where F(z) = ∑bnzn. 

Then f has a half plane of convergence if and only if F is analytic at z = 0. 

The proof of this theorem is not complicated but it is currently rather long so it will be 
the subject of a separate discussion. 

 

The partial sums of the coefficients of a Dirichlet series are important because of the 
integral representation f(s) =∫A(x)/x(s+1)dx where A(x) =∑a(n) (1 ≤ n ≤ x) and f(s) = 
∑a(n)/ns . 
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For convenience we consider a Є A such that a(1) =1 

Theorem 9 

Generally with f(s) = ∑a(n)/ns let Sf(x) = ∑a(n)  (1 ≤ n ≤ x). 

Then for all such f and x ≥ 1, and n ≥ 1 

Sx(f) =    1+ ∑Sx((ζ(s)-1)/ζ(s))n) a(pn) ...........................(i) 

and 

Sx(f) = 1 +  ∑Sx((lnζ(s))n/n!)a(Pn)      .............................(ii) 

This provides an interesting connection between defining a by its value on prime 
powers and defining a by the values on prime products. 

From the preceding discussion either may be used to define a. 

The problem of translating between any 2 ways of defining a would in general involve 
functions of ζ(s) – 1. 

We note that the summations in (i) and (ii) are always finite. 

Further the Sx behaves like a linear function on Dirichlet series. Consequently, it suffices 
to show that (i) and (ii) are true for ζ(s)k for k = 1,2,3..... 

For (i) we require Sx(ζ(s)k) = 1 + ∑Sx((ζ(s)-1)/ζ(s))n)dk(pn), k = 1,2 .... 

which would follow from an identity 

ζ(s)k = 1+ ∑ dk(pn){ ((ζ(s)-1)/ζ(s))}n. 

To this end we prove the identity 

1/(1-X)k  =  1+ ∑ dk(pn)Xn              ...................................(3) 

For k=1 this is 1/(1-X) =  1 + ∑Xn. 

Assume the identity for n = K. 

Then 1/(1-X)K+1  = {1/(1-X)}{ 1+ ∑ dk(pn)Xn}.  

 d(K+1)(pn) = dK(p) + dK(p2)+...+ dK(pn) clearly follows from ζ(s)(K+1) = ζ(s)ζ(s)K and the 
identity follows. 

The proof of (i) then follows substituting (ζ(s)-1)/ζ(s) for X in (3). 

 

To establish (ii) it suffices to show that 

ζ(s)K = 1 + ∑(1/n!)(ln(ζ(s))n dK(Pn),  but we note  dK(Pn)    = {dK(p)}n     = Kn                               
since dK(p) = 1+ d(K-1)(p) and d1(p) = 1 and so this identity is just  ζ(s)K  = 
exp(Kln(ζ(s)). 

 

 

Notes: 

The function F defined by F(z) = exp(z)/(1-z) has a local inverse H which is analytic in a 
neighbourhood of w = 1. 

We have F{H(w)} = w for |w-1| < A. 

Writing w = ζ(s) and H(w) = f(s) we have    

 H(w) =  a0 + a1(w-1) + a2(w-1)2 + ....+... and so  

f(s) = H(ζ(s)) = a0 + a1(ζ(s) -1) + a2(ζ(s) -1)2 + ....+... for | ζ(s) -1| < A. 

We thus see using Theorem 8 that f(s) is a Dirichlet series with a half plane of 
convergence and if a is the function defining the coefficients then a Є A. 

But F(f(s)) = exp(f(s))/(1-f(s)) =  F(H(ζ(s)) = ζ(s) for | ζ(s) -1| < A. 

i.e. (1-f(s)) ζ(s) = exp{f(s)}. 

It is not obvious from this relationship that f(s) has a half plane of convergence and  the 
current proof of this depends on Theorem 8. 

Calculation of coefficients a(p), a(pq), ... involves an interesting recurrence relationship. 
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In fact with xn = a(Pn) where as usual Pn is the product of n distinct primes, then for n≥ 
2 we have 

2xn + x(n-1) = (1/2)∑NCrxrx(N-r)    (summation 1 ≤ r ≤ N-1)       

If we write xN = (N!)qN /2(N-2) this relationship becomes 

qN +(q(N-1)/N)  = ∑qrq(N-r)    (summation 1 ≤ r ≤ N-1). 

Interest in this function preceded the above discussion.   

 

 

 


