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A note on the Riemann Hypothesis (i) – Peter Braun 

 

Abstract 

This paper discusses the possibility of extending inductive reasoning to include accepting RH as a 
true statement in mathematics and more generally. Immediate consequences are mentioned. 

 

Background 

In recent times the author has come to the view that it is remarkable that the classical Mobius sum 
function of Merten’s conjecture gets as ‘large’ as it does in both positive and negative values. 

Imagine the problem: 

M(x) > x∆ unboundedly as x →∞ and M(y) < -y∆ unboundedly as y →∞ for some ∆ satisfying 0 < ∆ 
< ½ without the theory of the Riemann zeta function. It may be that finding ∆ above 0 without the 
theory  (approaching from below) is just as difficult as finding ∆ smaller than 1 (approaching from 
above). A large research push seems to have been directed by the trivial upper bound estimate 
M(x) = O(x1) as x →∞. As we know, M(x) = o(x) as x →∞ is logically equivalent to the famous 
prime theorem. 

Indeed, this ‘direction’ is very much part of the number theory realm in line with refining estimates. 

 

Introduction 

The Riemann hypothesis (RH) is taken to mean that the non-trivial zeros of the classical zeta 
function all lie on σ = ½. 

The reader is referred to Borwein, Choi, Rooney and Weirathmueller [3] for a comprehensive 
account of the developments around RH since inception. There is no obvious place to start or stop 
references so the attempt is made to limit references to a few, each of which contains many 
references. Suprisingly, Borwein, Choi, Rooney and Weirathmueller [3] does not give great 
emphasis to the oscillatory behaviour of important number theoretic sum functions perhaps as  
they are perceived as likely to be ‘after the event ’properties. Wider references in this area may be 
found in Odlyzko and Riele [8], and Braun [4] 

RH is accepted in number theory as the sort of problem which may require a shift in thinking in 
order to understand the underlying obstacles. We attempt to expand the principle of mathematical 
induction (local induction) to a wider realm (global induction).  

By local inductive methods we mean the axioms of Peano and all the bits and pieces which are 
currently accepted as being necessary for the generation of true results in number theory. 

Preliminaries 

The order of proceeding is intended to add persuasion to the discussion and with this in mind the 
order of proceeding is to outline:-: 

 

 (α)   acceptable mathematical results used in the discussion 

 (β )  some consequences of the intended result that RH is true 

 (γ)   a  sketch of the possible requirements necessary to obtain the intended result 
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The mathematics section requires experience in the applications of the theory around functions of a 
complex variable (since RH is expressed here in this domain), and a good level of understanding of 
the higher arithmetic.  

 

(α) The mathematical results 

 Unless explicitly mentioned, Σ will mean summation 1<=n <=X. 

(A) Let { P1 ≡ [M1(X) = O(X(1/2) +ε) as X→ ∞]} be the classical statement about the Möbius sum 
function, and let {PK≡ [MK(X) = O (X(K-(1/2))+ε ) as X→∞ , K>= 2]}, be the corresponding statement 
for higher sums, where MK(X) =  ΣM(K-1)(n)      ..................(1). 

We know, without too much difficulty that each statement is equivalent to the Riemann hypothesis. 

Indeed, more generally, with 

                       A(X) = Σa(n)    

 we see that  

                        ΣA(n)  = [X]A(X) – Σna(n) + Error(X)      ...............(2) 

 

Perron’s integral formula for Dirichlet series allows an inductive proof that the statements each 
imply RH. 

The implication in the other direction involves contour integration using the Mellin transformation 
and the estimate 1/ ζ(s) = O(tε)  as t→∞. (See for example Titchmarsh [9]). The method is 
applicable for any natural number K. 

(B) By the modified Merten conjecture we mean the statement 

M1(X) = O(X1/2) as X→ ∞. 

We note here that there are unbounded instances of |M1(X)|>A√X as X→∞ for some A>1,  Odlyzko 
and Riele [8]. 

 

(C)  We can show that for any   K >=1 the statement  

MK(X) > AXα+K-1 and   MK(Y) < - AYα+K-1   for arbitrarily large A and unbounded X and unbounded Y 
as X→∞ and Y→∞ 

is equivalent to - 

ζ (s) = 0 in the half plane  σ >  α for some value of s. We denote this assertion by RH(α). 

These statements may be proved in much the same way as the statements  

MK(X) = O (X(K-(1/2))+ε) as X→∞. 

Note earlier comments for references in this area. 

 

The larger the α we choose to take the more ‘amplitude’ there is in the oscillatory behaviour of the 
sum function MK(X) as X→∞. A result which is being assumed is  

1/ζ(s) = o(tε) and ζ(s) = o(tε) as t→∞, for σ > α. The method is in Titchmarsh [9]. 

 

There should not be anything in this section which is contentious. Although the results do require a 
certain level of understanding in the mathematics around RH they do not require more than 
conventional mathematical manipulation. 

 

(β) Consequences which would flow from the proof  

The suggested frame of mind here is to assume for a while that RH is unprovable.  
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We note first that if a proposition is unprovable then assuming it either true or false, a certain form 
of mathematical reasoning will at most lead to some other proposition which is also unprovable. 

We assume the Riemann hypothesis is unprovable.     

The modified Merten’s conjecture implies the simplicity of the zeros of ζ (s), Odlyzko and Riele [8] 

RH is equivalent to the statement M1(X) = O (x½+ε) as X→∞.  

With RH established as unprovable then [M(X) = O(√X) as X→∞]  is a stronger statement than RH 
and is also unprovable. As this conjecture is explicit in form it will forever be neither true nor false. 

If a counter example to the simplicity of the zeros of ζ (s) were found it would establish the falsity of 
the modified Merten’s conjecture. Since this is not possible, it is not possible to refute the statement 
that the zeros of ζ (s) are simple. 

Thus any construction which produced an exceptional zero within finite arithmetic would contain a 
logical error. 

This flow which follows from the assumption concerning RH and some known mathematical results 
is very appealing as it resolves difficulties around the quest for non-simple zeros of ζ(s) and the 
likelihood or otherwise of the modified Merten’s conjecture. It also means that finding a repeated 
zero would imply the existence of a finite proof to decide the Riemann hypothesis. 
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A distraction  

To continue this line a little further, some problems in arithmetic which currently remain unsolved 
such as the twin prime problem and Goldbach’s conjecture, where conventional mathematical work 
appears to be converging on a solution, but never quite reaching the precise answer, may be 
amenable to the same approach. What would be required are logical statements with a similar sort 
of structure to those described in the following discussion.  
Hardy’s original classical approach, extended by Levinson, Conrey and others, may possibly be 
capable of being sharpened indefinitely and forever converging on a complete proof but never quite 
getting to the last full stop.  

Let T1(X) = [1,0,-1,0,1,2,1,0,-1,-2, -1, 0,1,2,3,2,1,0,-1,...] be the function values on N,  
(T1(15) = 3)) 

To say T1(X) is the ideal curve to think about when contemplating M1(X) is tempting as 

 T1(X) = O(√X) as X →∞. T1(X) is always heading towards a new maximum or a new minimum with 
no dawdling along the way. Thus if M(X) is balanced in the long run in achieving new maxima and 
new minima we may think about M1(X) = O(√X) as X →∞ as feasible. Grotesque counter examples 
are unfortunately, easily available. However, the thought of developing more language around this 
sort of oscillating function is quite appealing for purely descriptive purposes. 

Finally, a simple picture which fits with RH unprovable is to see the lines σ = ½  and σ =1 meeting 
at infinity, thus making it impossible to distinguish between the two cases in analysis. This makes 
RH(α) just as difficult as RH and since it is the negation of RH  it is what we would expect. If the 
critical strip could be stretched out in some transformation, it may be easier to distinguish between 
σ =1/2 and σ =1. 

Rex Croft at the University of Waikato, NZ calculated M1(X) up to 1011 in 1981-82 using the 
summation formula 

           ∑∑μ(n)μ(m) [N/(nm)]   =       -M(N) + 2M(√N) 

where each summation is up to √N for each variable (unpublished graphs). 

At the time this gave a very exciting glimpse at M(N)’s long journey. 

 

(γ) Concluding comments 

 

Is a consistent extension of inductive reasoning possible? 

In this section we sketch some details to support belief that an extension is achievable. 

It may look as if the arguments are shaped to provide a solution to RH and this is indeed true 
because the nature of the original inquiry is to seek out new necessary conditions for RH using an 
extension to inductive reasoning. However, if the extension is consistent with the base construction 
and has wider application it may become difficult to refute. 

An extension to a problem in logical thought involving mathematical induction, which could not be 
refuted in a bounded number of statements, would carry with it a certain protection. It would in a 
sense have ‘god’ like properties and with the acceptance of a new axiom it may be accepted as a 
legitimate method of arriving at a truth proof or a false proof – the choice depending on context. 

This would not seem to involve more than conventional mathematical induction plus an assurance 
that there was nothing included which was false plus of course, an axiom to legitimise the process. 
In this way, a problem which was undecidable could be taken to be true or false depending on other 
contextual matters.  

In a similar way, a problem which required the legitimacy of an unbounded number of logically 
‘different’ propositions for it to be true could be taken as exactly one of true or false using a 
consistent extension of inductive reasoning, provided the decision on which it was going to be 
(either true or false) was able to break the nexus of the symmetry found in the base logic. 
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A clue on why it may be possible to break such a nexus as described above may be seen in a simple 
example. 

Consider the problem of proving  

                      ∑n ≠ (1/2)N(N+1) for some counting number N. 

If we were not allowed to go through mathematical induction we would, after looking at the 
evidence, try to argue that an extension to reasoning was required. 

In such an extension we may ask for something like Peano’s axioms. 

We would argue that we would have to go through the truth of an unbounded number of 
statements to secure the truth. 

But if we allow inductive reasoning, the statement becomes a theorem, albeit a tautology. 

In this sense, a construction which has the look of something ‘made up’ may be necessary to solve 
RH. 

 

An extension of mathematical induction?  

Can the axioms be extended to widen the class of propositions which may be taken to be exactly 
one of true or false? 

What decisions need to be made to arrive at a sound extension? 

The discussion puts forward suggestions which fit an explanation of RH.  

We seek to find a line of reasoning which fits the problems and then turn back to examine the 
argument. 

The simple rule is that if RH is asserted as true or not false then we must be convinced beyond any 
doubt that no exception to the assertion will ever be found. 

A first axiom (choice) allows the existence of an inductive number τ which is not a counting 
number.  

The first construction is for the counting numbers N (as usually understood). 

The second construction then is NU{τ},  with the acceptance of an extension of Peano’s axioms to an 
inductive number τ, which is not a counting number and such that NU{τ} is an irrefutable  extension 
of the natural numbers. 

This may be formulated in a number of ways. 

The interpretation required in the extension is that a true inductive statement in the local 
arithmetic (N without extension) (which really only admits truth for counting numbers) remains 
true in the extension (the global arithmetic).  – True inductive propositions are now truly true for 
all natural numbers. The first assertion is that this is a consistent extension of the counting 
numbers. The existence of τ may be available using the axiom of choice as indicated.  

Alternatively, if this causes problems, reject the axiom of choice in the base construction and 
replace the extended construction of N with the one outlined. Then and only then admit the axiom 
of choice. This insists on order being important but seems unnecessary. 

 

Introducing τ to theorems 

We refer the reader to the section labelled (1). 

Please view a sequence of equivalent propositions one of which contains the number τ. 

In the extension then RH is unprovable because  

 Pτ ≡ [Mτ(X) = O (X(τ-(1/2))+ε) as X→∞ ] is unprovable. 

This leaves a situation where the ramifications of choosing RH true or RH false may be 
contemplated. 



October 2010 

 

The next stage is to establish that Pτ   may be chosen to be true.  All we need here is something 
which will make assuming Pτ true undeniable and the appropriate choice.  

From (1) we have  

P1  ≡  P2 ≡  P3  ...   ≡  Pτ          There is a very clear way of supporting the assertion that  

P1 > P2>P3...      ... >Pτ  . 

That is to say, we easily find examples where if we substitute the general AK(X) in place of MK(X), 
we may still say 

‘P1’ → ‘P2’ →’P3’→..............  →’Pτ  ’  

but there exist examples where ‘P2’ →’P1’ is false, ‘P3’→’P2’ is false etc. 

Thus Pτ is at the end of an ever weakening chain of equivalent propositions P1 , P2,  P3  ...    Pτ. 

The conclusion we draw is that Pτ true is the appropriate choice in this context.  

The proposition chain is ever weakening and because it is unprovable numerical computation will 
never produce a counter example. 

If the Riemann hypothesis were chosen to be false we would be left with the problem of not being 
able to produce a counter example since a counter example through computation would prove Pτ 
false. 

It follows from the equivalences that RH true is the appropriate choice.   

We have an example of a proposition in arithmetic which is unprovable but which may be taken to 
be true without contradiction. Computational evidence will always support this choice. 

Coming at the problem from the statements about the falsity of RH we find a ‘divergent’ set of 
propositions described in (C) if RH is assumed to be false. The value of this divergent series will be 
false using a similar convention. We thus have consistency if we take RH to be true. This is indeed 
wishful thinking but based on irrefutable evidence because that is how things have turned out. We 
can be as confident that RH is true as we are that   ∑n = (1/2)N(N+1) is true. 

It also prevents ‘havoc’ in the distribution of prime numbers as envisaged by Bombieri [1].  

Suspicion of this type of explanation may come from doubting that the generalised hypotheses in 
algebraic number theory may not be understood by this method. However in the next draft of this 
discussion we see the possibility that if RH is established as a problem which does not admit finite 
proof then this realisation may provide sufficiency for these generalisations to also be undecidable. 
It would require showing the structural similarities were driving the un-decidability. 

In considering the un-decidability of this problem, there may be some interest in the following 
definition of the Mobius function using the greatest integer function. 

Let μ(1) = 1. 

For N ≥ 2:   

If Σ μ(n)[N/n]  = 0 then μ(N) = +1, 

If Σ μ(n)[N/n]  = 1  then μ(N) = 0, 

If Σ μ(n)[N/n]  > 1 then μ(N) = -1, 

where summation is to N-1. 

In arithmetic then the problem of the order of the sum function starts to look difficult. 
An each inductive stage, the value of μ appears to depend on an increasing number of earlier μ 
values. 

The prime number theorem is equivalent to proving M(X) = o(X) as X → ∞, and proving this by 
elementary methods provides some indication of how difficult an explicit  proof of the Riemann 
hypothesis would be in arithmetic. 
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